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HIGHER ORDER DIFFERENTIAL EQUATIONS

Theory of linear equations

Initial-value and boundary-value problem

nth-order initial value problem is

dn : dn-1 dv
Solve: a,,(\) : -+ ap- l(x) Yt .. +a I(x)—} + ap(x)y = g(x)
ln | dx
Subject to: W(x0) =y, V(x0) = y1s - ... YV =y, (1)

we seek a function defined on an interval I, containing x, that satisfies the DE and
the n initial conditions above.



Existence and uniqueness
Theorem: Existence of a unique solution

Let a,(x), a,,_1(x), ... , aj(x), ap(x) and g(x) be continuous on an interval I and let
an(x) # 0 for every x in this interval. If x = xy in any point in this interval, then a
solution y(x) of the initial value problem (1) exists on the interval and is unique.

Example: Unique solution of an IVP
W5 =y +T7y=0, y1)=0,y'(1)=0,y"(1)=0

has the trivial solution y = 0. Since the DE is linear with constant coefficients, all
the conditions of the theorem are fulfilled, and thus y = 0 is the only solution on any
interval containing x = 1.



Boundary-value problem

consists of solving a linear DE of order two or greater in which the dependent variable
y or its derivatives are specified at different points. Example: a two-point BVP

2
“ d }
Solve: ag(.x)—i + ay(x)=— + ap(x)y = g(x)
dx= dx
Subject to boundary conditions: y(xp) = vo, ¥(b) = y; (2)

solutions of the DE

——




A BVP can have many, one or no solutions:

The DE x”" +16x = 0 has the two-parameter family of solutions x = ¢| cos 41 +c¢» sin 41.
Consider the BVPs:

(1) x(0) = 0, and x(r/2) = 0 = ¢ = 0 and the solution satisfies the DE for any value
of ¢;, thus the solution of this BVP is the one-parameter family x = ¢ sin4t.

(2) x(0) =0, and x(7/8) = 0 = ¢ = 0 and ¢; = 0, so the only solution to this BVP is
x = 0.

(3) x(0) = 0 = ¢; = 0 again but the second condition x(r/2) = 1 leads to the
contradiction: 1 = ¢ sin 21 = ¢7.0 = 0.



Homogeneous equations
nth-order homogeneous differential equation

n dn- 1 ,

+ + ... +dlx + dplXx)y 3

dn( ’f) dri— l

nth-order nonhomogeneous differential equation (g(x) # 0)

d"\' n—1_

an( \) >+ an—l(\)
X‘

dy
Tt a5 +agly = g() @)
dx dx

Examples:
(1) Homogeneous DE: 2y” + 3y’ = 5y =0
(2) Nonhomogeneous DE: x2y"” + 6y + 10y = .

To solve a nonhomogeneous DE, we must first be able to solve the associated
homogeneous equation.



We will soon proceed to the general theory of nth-order linear equations which we will
present through a number of definitions and theorems. To avoid needless repetition,
we make (and remeber) the following assumptions:

on some common interval /

e the coefficients q;(x), i = 0, 1,2, ...,n are continuous;

¢ the function g(x) onr. h. s. is continuous; and

e ay(x) # 0 for every x in the interval.



Differential operators

Examples:

dy d d2y d [dy 5 . ny

— =—y=Dy or — = | =D(Dy)= D"y andingeneral — = D"y
dx _ dx ‘ dx? dx(dx) (Dy) : ’ dx” '

nth-order differential operator:
polynomial expressions involving D are also differential operators

L=aAﬂD"+mkﬂﬂDm4+...+amﬂD+adﬂ

An nth-order differential operator is a linear operator, that is, it satisfies

Llaf(x) +Bg(x)] = aL(f(x)) + BL(g(x)) (5)



Differential equations
Any linear differential equation can be expressed in terms of the D notation.

Example

vi+5y +6y = 5x-3
Dz)-' +5Dy+6y = 5x-3
(D* +5D +6)y = 5x-3

The nth-order linear differential equations can be written compactly as

Homogeneous: Liy) = 0
Non-homogeneous: L(y) = g(x)



Superposition principle
Theorem: Superposition principle - homogeneous equations

Let yq, vo, ... , yx be solutions of the homogeneous nth-order DE (3) on an interval |,
then the linear combination

M=

y = c1y1(x) + caya(x) + ... + cpyp(x) = ) ciyi(x),

i=1
where the ¢;, i = 1,2, ..., k are arbitrary constants, is also a solution.

Proof: The case k = 2. Let y;(x) and y;(x) be solutions of L(y) = 0, then also

L(y) = Lc1y1(x) + coyp(x)] = c1 L(y1) + c2L(y2) = 0



Corollaries

(a) A constant multiple v = ¢;v(x) of a solution y;(x) of a homogeneous linear DE is
also a solution.

(b) A homogeneous linear DE always possesses the trivial solution y = (0.

Example: Superposition - homogeneous DE
Let y; = x% and y» = x2 In x be both solutions of the homogeneous linear DE
Xy = 2xy’ + 4y = 0 on the interval I = (0, o).

Show that by superposition principle, the linear combination
y= cl.r2 + c2x2 In x

is also a solution of the equation on the interval.



Linear dependence and linear independence

Definition:
A set of functions fj(x), f>(x), ..., fu(x) is said to be linearly dependent on an interval
I if there exist constants ¢y, ¢, ..., i, not all zero, s.t.

c1f1(x) + cafalx) + ... + cpfu(x) =0 (6)

for every x in the interval. If the set of functions is not linearly dependent on the
interval, it is said to be linearly independent.

Example: If two functions are linearly dependent, then one is simply a constant mul-
tiple of the other: assuming ¢y # 0, ¢1f1(x) + c2fo(x) = 0 = fi(x) = —(c2/c1) fH(x).
For example fj(x) = sin(x) cos(x) and f>(x) = sin(2x) = 2 f1(x).

Two functions are linearly independent when neither is a constant multiple of the
other on an interval. For example fj(x) = x and f3(x) = |x] on I = (—o00, 00).

y y

h=x F,= I




Solutions of differential equations

We are primarily interested in linearly independent solutions of linear DEs.

How to decide whether n solutions yy, ys,....,yv, of a homogeneous linear nth-order
DE (3) are linearly independent?

Definition: Wronskian

Suppose each of the functions fj(x), f>(x), ..., fu(x) possesses at least n — 1 deriva-
tives. The determinant

N Lo
v’ -, -,
fl f,’Z fn
.(n.— 1) .(n.— 1) .(n'— 1)
1 ) e In

is called the Wronskian of the functions.



Theorem: Criterion for linearly independent solutions

Let v, v7....,vy be n solutions of the homogeneous linear nth-order DE (3) on an
interval I. Then the set of solutions is linearly independent on [/ if and only if
W(y1,¥2, ... yu) # 0 for every x in the interval.

Definition: Fundamental set of solutions

Any set yi, v, ....yn Of n linearly independent solutions of the homogeneous linear

nth-order DE (3) on an interval [ is said to be a fundamental set of solutions on
the interval.



Theorem: Existence of a fundamental set

There exists a fundamental set of solutions for the homogeneous linear nth-order DE
(3) on aninterval 1.

Theorem: General solution - homogeneous equations

Let vy, v2,.... vy be a fundamental set of solutions of the homogeneous linear nth-

order DE (3) on an interval I. Then the general solution of the equation on the
interval is

y =c1y(x) + caya(x) + ... + cpyn(x)

where ¢, i = 1,2, ...,n are arbitrary constants.
For proof for the case n = 2 see D.G. Zill et al., Advanced Engineering Mathematics,
4th Edition, p. 104.



mm) Example 1:

The functions y; = ¢** and y; = ¢~ are both solutions of the homogeneous linear
DE y" — 9y = 0 on (—co0, 00).

3x

Calculate the Wronskian and determine whether the functions form a fundamental
set of solutions. If yes, determine a general solution.

mm) Example 2:
The function y = 4sinh3x — 5¢°¥ is a solution of the DE in Example 1 above. Verify

this.

3x —3x

We must be able to obtain this solution from the general solution y = ¢je”* + cre

What values the constants ¢; and ¢» have to have to get the solution above.



mm) Example 3:

The functions y; = €%, y5 = ¢**, and y3 = ¢* satisfy the third order DE y"’ —
6y’ + 11y’ — 6y = 0. Determine whether these functions form the fundamental set of
solutions on (—co, c0), and write down the general solution.



d" dn-1 d
an(3) g + a1 @D g+ - @@ + a0y = 89

Nonhomogeneous equations

Any function y, free of any arbitrary parameters that satisfies (4) is said to be a
particular solution of the equation.

For example, y, = 3 is a particular solution of y** + 9y = 27.
Theorem: General solution - nonhomogeneous equations

Let y, be any particular solution of the nonhomogeneous linear nth-order DE (4) on
an interval /, and let v, v, ..., v, be a fundamental set of solutions of the associated
homogeneous DE (3) on 1. Then the general solution of the equation on 7 is

y= Cl.\"l(,r) -+ (‘2}'2(,‘() T rer T Cnyn(fx‘) + )'p (7)

where the ¢;,i = 1,2, ..., n are arbitrary constants.

(4)



Complementary function

The general solution of a homogeneous linear equation consists of the sum of two
functions

y =c1y1(x) + caya(x) + ... + cpynl(x) + yp(x) = Vel(x) + Vp(x)

The linear combination y = ¢jy(x)+cay2(x)+...+cpyn(x) which is the general solution
of the homogeneous DE (3), is called the complementary solution for equation (4).

Thus to solve the nonhomogeneous linear DE, we first solve the associated homoge-
neous equation and then find any particular solution of the nonhomogeneous equa-
tion. The general solution is then

y = complementary function + any particular solution.



Another superposition principle
Theorem: Superposition principle - nonhomogeneous equations

Let yp,.¥ps, .- Vp, D€ k particular solutions of the nonhomogeneous linear nth-order
DE (4) on an interval I corresponding, in turn, to k distinct functions gy, g-. ..., g¢. That
is, suppose yp,, denotes a particular solution of the corresponding DE

an(x)}'(") + an—l(-‘:)_\’(n_” + ... +a(x)y +apg(x)y = gi(x) (8)

wherei=1,2,....k. Then

Vp = Yp(X) + yp,(X) + oo + yp, (%) (9)
is a particular solution of

an(y"™ + an_ 1YV 4 L+ a0y + ap(0)y = g1(x) + g2(0) + ... + gi(x) (10)



For proof for the case k = 2 see D.G. Zill et al., Advanced Engineering Mathematics,
4th Edition, p. 104.

Example:
Verify that
2 " . . .
yp, = —4x° s aparticular solution of y" -3y’ +4y = -16x" + 24x - 8
7y . . . Ty
Yp, = €~ is a particular solution of  y"" — 3y’ + 4y = 2¢°*
Yp; = xe*  isaparticular solution of y” -3y +4y=2xe" - ¢*

and thaty = yp,, + yp, + Vp; = —4x2 + €2¥ + xe* is a solution of

v’ =3y +4y = —16x + 24x — 8 + 2% 4+ 2xe* — €°



Remarks:

A dynamical system whose mathematical model is a linear nth-order DE

an(OY™ + a1 (Y + L+ a0y + agn)y = g()

is said to be a linear system. The set of n time dependent functions y(1),y'(1),

., v~ D(s) are the state variables of the system. Their values at some time 1
give the state of the system. The function g is called the input function, forcing
function, or excitation function. A solution y(r) of the DE is said to be the output
or response of the system. The output or response y(r) is uniquely determined by
the input and the state of the system prescribed at a time 1; that is, by the initial
conditions y(tg), y'(1g), ..., ¥~ V(1g).



Reduction of order

Suppose y(x) denotes a known solution of a homogeneous linear second-order equa-
tion
ar(x)y" + ay(x)y" + ap(x)y = 0 (11)

we seek the second solution y>(x) so that y; and y; are linearly independent on some
interval 1. That is we are looking for y» s. t. y2/y| = u(x), or y2(x) = u(x)y(x).

The idea is to find u(x) by substituting y>(x) = u(x)y;(x) into the DE. This method is
called reduction of order since we must solve a first-order equation to find u.



mm) Example:

Given y; = ¢* is a solution of y/ — y = 0 on (-0, =), use the reductions of order to
find a second solution y».

If y = u(x)y;(x) = u(x)e* then

"= uet + e

y' = ue' + 2" +e'u”’

and substituting into the original ODE and using the substitution w = u” we get
yV'i-y=e'W +2u)=0 = u"+2 =0 = W +2w=0.

Using the integrating factor e and getw=u' = Cle—2x and integrating again yields

U= _%Cle—Zx + ¢, SO the second solution is e™:

1l _—
y = u(x)e* = —Ele Y+ e’



General case

We put the equation (11) into the standard form by dividing by a>(x):

Vv 4+ P(x)y + Q(x)y =0 (12)
where P(x) and Q(x) are continuous on some interval /. Assume that y;(x) is a known
solution of (12) on I and that y(x) # 0 for every x € I. We define y = u(x)y(x)

y = uy'l +yu’, y'= uy'l' + 2_\"1 u' + yu”

),I’ + P_V’ + Q.\' = U I:_V’l’ + P_",l + Q,"l] + }"lu,’ + (2}*'1 + P_vl)l" = O

where the term in the square bracket equals to zero.



This implies

yiu'" + (2_\"1 + P_vl)u' =0 or yw'+ (2_\"1 + Py l) w=0

where we used w = u’. The last equation can be solved by separating variables and
integrating

dw Y
42 ldx+ Pdx =0
Wy
N
In |n-’__\-'f| = - f Pdx + ¢
or
2 ~ [ Pdx

wy| = cre



Solving the last equation for w, and using w = u” and integrating again gives

By choosing ¢; = 1 and ¢; = 0 and by using v = u(x)y;(x) we find the second solution
of the equation (12):

— dex
vy = y1(x) f Ix (13)

yi( Y)“



Example:
y1 = x* is a solution of x*y"” — 3xy’ + 4y = 0. Find the general solution on (0, ).
From the standard form of the equation
3 4
_V” _ _yl N _2}, -0
X X

we find using the formula above

P 63 f dx/x 2 dx ,
Vo = X ———dx = x — =x"Inx
x4 X

The general solution on (0, co) is given by

2 2
y=c1y] + 2 =c1x" +cx”Inx



