Solution of ODEs by direct integration

Solution of ODEs by direct integration

Consider a linear n-th order ODE

$$
a_{n}(x) \frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}+a_{n-1}(x) \frac{\mathrm{d}^{n-1} y}{\mathrm{~d} x^{n-1}}+\ldots+a_{1}(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+a_{0}(x) y=g(x)
$$

If the coefficients satisfy $a_{n}(x) \neq 0$, and $a_{i}=0$ for all $i<n$, the equation can be written in the following form and solved by direct integration

$$
\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}=\frac{g(x)}{a_{n}(x)}
$$

Example 1: $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=1$
$\Rightarrow \int \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \mathrm{~d} x=\frac{\mathrm{d} y}{\mathrm{~d} x}=\int \mathrm{d} x=x+A \Rightarrow y=\int \frac{\mathrm{d} y}{\mathrm{~d} x} \mathrm{~d} x=\int(x+A) \mathrm{d} x=\frac{1}{2} x^{2}+A x+B$
where the integration constants A and B are determined from the initial conditions.

Example 2: $\frac{\mathrm{d}^{5} y}{\mathrm{~d} x^{5}}=\sin x$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}=-\cos x+k_{1} \\
& \Rightarrow \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=-\sin x+k_{1} x+k_{2} \\
& \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\cos x+\frac{1}{2} k_{1} x^{2}+k_{2} x+k_{3} \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\sin x+\frac{1}{6} k_{1} x^{3}+\frac{1}{2} k_{2} x^{2}+k_{3} x+k_{4} \\
& \Rightarrow y=-\cos x+\frac{1}{24} k_{1} x^{4}+\frac{1}{6} k_{2} x^{3}+k_{3} x^{2}+k_{4} x+k_{5}
\end{aligned}
$$

Example 3: $m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=0$

$$
\Rightarrow \frac{\mathrm{d} x}{\mathrm{~d} t}=A \quad \Rightarrow \quad x=A t+B
$$

Using the initial conditions

$$
x(0)=B=x_{0}
$$

and

$$
\dot{x}(0)=A=v_{0}
$$

we can write

$$
x(t)=v_{0} t+x_{0}
$$

First-order differential equations

To find either explicit or implicit solution, we need to
(i) recognize the kind of differential equation, and then
(ii) apply to it an equation-specific method of solution.

Separable variables

Solution by integration

The differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=g(x) \tag{2}
\end{equation*}
$$

is the simplest ODE. It can be solved by integration:

$$
y(x)=\int g(x) d x=G(x)+c
$$

where $G(x)$ is an indefinite integral of $g(x)$.

Example:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=1+e^{2 x}
$$

has the solution

$$
y=\int\left(1+e^{2 x}\right) d x=\frac{1}{2} e^{2 x}+x+c .
$$

This ODE and its method of solution is a special case when f is a product of a function of x and a function of y.

Definition: Separable equation

A first-order differential equation of the form

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=g(x) h(y) \tag{3}
\end{equation*}
$$

is said to be separable or to have separable variables.

Method of solution:

A one parameter family of solutions, usually given implicitly, is obtained by first rewriting the equation in the form

$$
p(y) d y=g(x) d x
$$

where $p(y)=1 / h(y)$, and integrating both sides of the equation. We get the solution in the form

$$
H(y)=G(x)+c
$$

where $H(y)=\int p(y) d y$ and $G(y)=\int g(x) d x$ and c is the combined constant of integration.

Example: A separable ODE

Solve

$$
(1+x) d y-y d x=0
$$

Dividing by $(1+x) y$ we get $d y / y=d x /(1+x)$ and can integrate

$$
\begin{aligned}
\int \frac{d y}{y} & =\int \frac{d x}{1+x} \\
\ln |y| & =\ln |1+x|+c_{1} \\
y & =e^{\ln |1+x|+c_{1}}=e^{\ln |1+x|} \cdot e^{c_{1}} \\
& =|1+x| e^{c_{1}} \\
& = \pm e^{c_{1}}(1+x)=c(1+x)
\end{aligned}
$$

Example: Solution curve

Solve the initial value problem

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{y}, \quad y(4)=-3
$$

By rewriting the equation as $y d y=-x d x$, we get

$$
\begin{aligned}
\int y d y & =-\int x d x \\
\frac{y^{2}}{2} & =-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

We can rewrite the result as $x^{2}+y^{2}=c^{2}$, where $c^{2}=2 c_{1}$. This family of solutions represents a family of concerning circles centered at the origin. The IVP determines the circle $x^{2}+y^{2}=25$ with radius 5 .

Losing a solution

Some care should be exercised when separating variables, since the variable divisors could be zero at a point.

If r is a zero of $h(y)$, then substituting $y=r$ into $d y / d x=g(x) h(y)$ makes both sides zero, i.e. $y=r$ is a constant solution of the DE.

This solution, which is a singular solution, can be missed in the course of the solving the ODE.

Example:

Solve

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{2}-4
$$

We put the equation into the following form by using partial fractions

$$
\frac{d y}{y^{2}-4}=\left[\frac{1 / 4}{y-2}-\frac{1 / 4}{y+2}\right] d y=d x
$$

and integrate

$$
\begin{aligned}
\frac{1}{4} \ln |y-2|-\frac{1}{4} \ln |y+2| & =x+c_{1} \\
\ln \left|\frac{y-2}{y+2}\right| & =4 x+c_{2} \\
\frac{y-2}{y+2} & =e^{4 x+c_{2}}
\end{aligned}
$$

We substitute $c=e^{c_{2}}$ and get the one-parameter family of solutions

$$
y=2 \frac{1+c e^{4 x}}{1-c e^{4 x}}
$$

Actually, if we factor the r.h.s. of the ODE as

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=(y-2)(y+2)
$$

we see that $y=2$ and $y=-2$ are two constant (equilibrium solutions). The earlier is a member of the family of solutions defined above corresponding to $c=0$. However $y=-2$ is a singular solution and in this example it was lost in the course of the solution process.

Example: an IVP

Solve

$$
\cos x\left(e^{2 y}-y\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=e^{y} \sin 2 x, \quad y(0)=0
$$

By dividing the equation we get

$$
\frac{e^{2 y}-y}{e^{y}} d y=\frac{\sin 2 x}{\cos x} d x
$$

We use the trigonometric identity $\sin 2 x=2 \sin x \cos x$ on r.h.s. and integrate

$$
\begin{aligned}
\int\left(e^{y}-y e^{-y}\right) d y & =2 \int \sin x d x \\
e^{y}+y e^{-y}+e^{-y} & =-2 \cos x+c
\end{aligned}
$$

The initial condition $y(0)=0$ implies $c=4$, so we get the solution of the IVP

$$
e^{y}+y e^{-y}+e^{-y}=4-2 \cos x
$$

Example: an IVP

Solve

$$
\cos x\left(e^{2 y}-y\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=e^{y} \sin 2 x, \quad y(0)=0
$$

By dividing the equation we get

$$
\frac{e^{2 y}-y}{e^{y}} d y=\frac{\sin 2 x}{\cos x} d x
$$

We use the trigonometric identity $\sin 2 x=2 \sin x \cos x$ on r.h.s. and integrate

$$
\begin{aligned}
\int\left(e^{y}-y e^{-y}\right) d y & =2 \int \sin x d x \\
e^{y}+y e^{-y}+e^{-y} & =-2 \cos x+c
\end{aligned}
$$

The initial condition $y(0)=0$ implies $c=4$, so we get the solution of the IVP

$$
e^{y}+y e^{-y}+e^{-y}=4-2 \cos x
$$

