












Fourier transform

We will now

• introduce a new integral transforms called Fourier transforms;

• expand on the concept of transform pair: an integral transform and its inverse;

• see that the inverse of an integral transform is itself another integral transform.

• present operational properties of the Fourier transform.



Transform pairs

Integral transforms appear in transform pairs: if f (x) is transformed into F(↵) by an

integral transform

F(↵) =
Z

b

a

f (x) K(↵, x) dx

then the function f can be recovered by another integral transform

f (x) =
Z

b

a

F(↵) H(↵, x) dx

called the inverse transform. The functions K and H in the integrands above are

called the kernels of their respective transforms. For example K(s, t) = e
�st

is the

kernel of the Laplace transform.



Definition: Fourier transform pairs

(i)

Fourier transform:

F { f (x)} =
Z 1

�1
f (x) e

�i↵x
dx = F(↵)

Inverse Fourier transform:

F �1 {F(↵)} = 1
2⇡

Z 1

�1
F(↵) e

i↵x
d↵ = f (x)

The Parseval-Plancherel formula:

The function and its Fourier transform have the same norm

Z +1

�1
| f (x)|2 dx =

Z +1

�1
|F(↵)|2 d↵



(ii)

Fourier sine transform:

Fs { f (x)} =
Z 1

0
f (x) sin↵x dx = F(↵)

Inverse Fourier sine transform:

F �1
s {F(↵)} = 2

⇡

Z 1

0
F(↵) sin↵x d↵ = f (x)



(iii)

Fourier cosine transform:

Fc { f (x)} =
Z 1

0
f (x) cos↵x dx = F(↵)

Inverse Fourier cosine transform:

F �1
c {F(↵)} = 2

⇡

Z 1

0
F(↵) cos↵x d↵ = f (x)



Existence

The existence conditions for the Fourier transform are more stringent than those for

the Laplace transform. For example, F {1}, Fs {1} and Fc {1} do not exist.

Sufficient conditions for existence are that f be absolutely integrable on the appro-

priate interval and that f and f
0

are piecewise continuous on every finite interval.



Operational properties

Transforms of derivatives.

(i) Fourier transform

Supose that f is continuous and absolutely integrable on the interval (�1,1) and

f
0

is piecewise continuous on every finite interval. If f (x) ! 0 as x ! ±1, then

integration by parts gives

F
n
f
0(x)
o
=

Z 1

�1
f
0(x) e

�i↵x
dx =

h
f (x) e

�i↵x
i1
�1 + i↵

Z 1

�1
f (x) e

�i↵x
dx

= i↵

Z 1

�1
f (x) e

�i↵x
dx

That is: F
n
f
0(x)
o
= i↵F(↵)



F
n
f
0(x)
o
= i↵F(↵)

Similarly, under the added assumptions that f
0

is continuous on (�1,1), f
00(x) is

piecewise continuous on every finite interval, and f
0(x)! 0 as x! ±1, we have

F
n
f
00(x)
o
= (i↵)2

F(↵)

In general, under analogous conditions, we have

F
n
f

(n)(x)
o
= (i↵)n

F(↵)

where n = 0, 1, 2, ....



It is important to realize that the sine and cosine transforms are not suitable for

transforming the first derivatives and in fact any odd-order derivatives:

Fs

n
f
0(x)
o
= �↵Fc { f (x)} and Fc

n
f
0(x)
o
= ↵Fs { f (x)} � f (0)

as these are not expressed in terms of the original integral transform.



(ii) Fourier sine transform (optional)

Suppose f and f
0

are continuous, f is absolutely integrable on [0,1) and f
00

is

piecewise continuous on every finite interval. If f ! 0 and f
0 ! 0 as x! 1, then

Fs

n
f
00(x)
o
=

Z 1

0
f
00(x) sin↵x dx =

h
f
0(x) sin↵x

i1
0 � ↵

Z 1

0
f
0(x) cos↵x dx

= �↵ ⇥ f (x) cos↵x
⇤1
0 � ↵

2
Z 1

0
f (x) sin↵x dx = ↵ f (0) � ↵2Fs { f (x)}

Fs

n
f
00(x)
o
= �↵2

F(↵) + ↵ f (0)

(iii) Fourier cosine transform (optional)

Under the same assumptions, we find the Fourier the Fourier cosine transform of

f
00(x) to be

Fc

n
f
00(x)
o
= �↵2

F(↵) � f
0(0)



Properties of the Fourier transform

Let us identify time t with the variable x and the angular frequency ! with ↵. Then

the Fourier transform of a function of time f (t), a signal, produces the spectrum of

the signal in the representation given by the angular frequency !.

1. Linearity

The Fourier transform is a linear operator:

F {k1 f1(t) + k2 f2(t)} = k1F1(!) + k2F2(!)

where F { f1(t)} = F1(!) and F { f2(t)} = F2(!).

2. Time translation/shifting

Time translation or shifting by an amount t0 leads to a phase shift in the Fourier



transform:

F �
f (t � t0)

 
= e
�i!t0F(!)

3. Frequency translation/shifting

F
n
e

i!0t
f (t)

o
= F(! � !0)

The multiplication of f (t) by e
i!0t

is called the complex modulation. Thus, the

complex modulation in the time domain corresponds to a shift in the frequency

domain.



4. Time scaling

F { f (kt)} = 1
|k| F

✓!
k

◆

Therefore if t is directly scaled by a factor k, then the frequency variable is

inversely scaled by the factor k. Consequently, for k > 1 we have a time-

compression resulting in a frequency spectrum expansion. For k < 1 there is

a time-expansion and a resulting frequency spectrum compression.

5. Time reversal

This property follows from the time scaling for k = �1

F { f (�t)} = F(�!)



6. Symmetry

This property is very useful in evaluation of certain Fourier transforms

F {F(t)} = 2⇡ f (�!)

7. Fourier transform and inverse Fourier transform of a derivative

F
(

d f (t)
dt

)
= i!F(!)

F �1
(

dF(!)
d!

)
= �it f (t)

8. Fourier transform of an integral

F
(Z

t

�1
f (u) du

)
= ⇡F(0)�(!) +

1
i!

F(!)



9. Fourier transform of a convolution

F { f1(t) ⇤ f2(t)} = F
(Z

t

0
f1(⌧) f2(t � ⌧) d⌧

)
= F1(!) F2(!)

The counterpart of convolution in the time domain is multiplication in the fre-

quency domain.

10. Fourier transform of a product

F { f1(t) f2(t)} = 1
2⇡

F1(!) ⇤ F2(!)



Example 1: Fourier transform of a simple piecewise continuous function

f (t) =

8>>><
>>>:

�2, �⇡  t < 0
2, 0  t < ⇡
0, Otherwise

Solution:

F(!) =
Z 0

�⇡
(�2)e�i!t

dt +

Z ⇡

0
(2)e�i!t

dt =
2
i!

h
e
�i!t
i0
�⇡ �

2
i!

h
e
�i!t
i⇡
0

=
2
i!

h⇣
1 � e

i!⇡
⌘
�
⇣
e
�i!⇡ � 1

⌘i
=

2
i!

[2 � 2 cos(!⇡)]

F(!) =
4
i!

[1 � cos(!⇡)]



Example 2: Fourier transform and ODEs

Find a solution of the Airy equation

y
00 � xy = 0

subject to the far field condition lim|x|!1 y(x) = 0.

Solution:

The Fourier transform of the equation gives the first order ODE

�k
2
Y(k) � iY

0(k) = 0.



The equation

�k
2
Y(k) � iY

0(k) = 0

can be solved using the method of separation of variables. This gives the following

result

Y(k) = Ce
ik

3/3

whose inverse Fourier transfom is

y(x) =
C

2⇡

Z +1

�1
exp
h
i(kx + k

3/3)
i

dk.

This integral cannot be reduced any further. For C = 1, the result is known as Airy

function and is denoted as Ai(x).



Fourier transform in quantum mechanics

Consider a (one-dimensional) wave function  (x). Its Fourier transform is defined

(with a slightly different convention) as

 ̄(p) =
1p
2⇡~

Z +1

�1
e
�ipx/~  (x) dx

and its inverse as

 (x) =
1p
2⇡~

Z +1

�1
e

ipx/~  ̄(p) dp

where

 ̄(p) =
1p
~
 ̃(k) =

1p
~
 ̃
✓

p

~

◆

as p = ~k, and where  ̃(k) = 1p
2⇡

R +1
�1 e

�ikx/~  (x) dx.



�-function

The Fourier transform of the �-function

�̄x0(p) =
1p
2⇡~

Z +1

�1
e
�ipx/~ �(x � x0) dx =

1p
2⇡~

e
�ipx0/~

and in particular

�̄0(p) =
1p
2⇡~
.

The inverse Fourier transform yields a very useful expression for the �-function

�(x � x0) =
1

2⇡~

Z +1

�1
e

ip(x�x0)/~
dp =

1
2⇡

Z +1

�1
e

ik(x�x0)
dk.




