Fourier integral
Fourier series were used to represent a function f defined of a finite interval (—p, p)

or (0, L). It converged to f and to its periodic extension. In this sense Fourier series
is associated with periodic functions.

Fourier integral represents a certain type of nonperiodic functions that are defined
on either (—co, c0) or (0, co).



From Fourier series to Fourier integral

Let a function f be defined on (—p, p). The Fourier series of the function is then
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If we let a, = nn/p, Aa = a,, | — an = 7/ p, we get
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We now expand the interval (—p, p) by taking p — co which implies that Aa — 0.
Consequently,

lim ZF(af,,) AaquF(ar) do
A(r—>0n:l 0

Thus, the limit of the first term in the Fourier series f_ pp f(1) dt vanishes, and the limit
of the sum becomes

f(x) = zl—rfw \( f(t) cosat dt) COS X + (f f(t) sinat dt) sin afx‘ da
0 —00 —00

This is the Fourier integral of f on the interval (—co, c0).



Definition: Fourier integral

The Fourier integral of a function f defined on the interval (—co, c0) is given by

where
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Convergence of a Fourier integral
Theorem: Conditions for convergence

Let f and f” be piecewise continuous on every finite interval, and let f be absolutely
integrable on (-0, ) (i.e. the integral f_“; |f(x)| dx converges). Then the Fourier
integral of f on the interval converges for f(x) at a point of continuity. At a point of
dicontinuity, the Fourier integral will converge to the average
Jx+) + f(x—)
2
where f(x+) and f(x—) denote the limit of f at x from the right and from the left,

respectively.




Complex form
The Fourier integral (3) also possesses an equivalent complex form, or exponential
form:
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Fourier transform

We will now

introduce a new integral transforms called Fourier transforms;

expand on the concept of transform pair: an integral transform and its inverse;

see that the inverse of an integral transform is itself another integral transform.

present operational properties of the Fourier transform.



Transform pairs

Integral transforms appear in transform pairs: if f(x) is transformed into F(@) by an
integral transform

b
F(a):f f(x) K(a, x) dx

then the functionf can be recovered by another integral transform

b
f(x):f F(a) Ha, x) dx

called the inverse transform. The functions K and H in the integrands above are
called the kernels of their respective transforms. For example K(s,1) = e % is the
kernel of the Laplace transform.



Definition: Fourier transform pairs
(i)

Fourier transform:

Tuu»=f f(x) e dx = F(a)

Inverse Fourier transform:

(o)

1 :
FUF(a)} = o f_ F(a) ¢ da = f(x)

(o]
The Parseval-Plancherel formula:
The function and its Fourier transform have the same norm
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(i)

Fourier sine transform:

Fslf(x0)} = foo f(x) sinax dx = F(a)
0

Inverse Fourier sine transform:

FHF@) =2 [ @ sinexda = 1
0



(i)

Fourier cosine transform:

Felf0)} = foof(X) cosax dx = F(a)
0

Inverse Fourier cosine transform:

Fo ' (Fa)) = % f " F(@) cosax da = f(x)
0



Existence

The existence conditions for the Fourier transform are more stringent than those for
the Laplace transform. For example, ¥ {1}, F5{1} and ¥, {1} do not exist.

Sufficient conditions for existence are that f be absolutely integrable on the appro-
priate interval and that f and f’ are piecewise continuous on every finite interval.



Operational properties

Transforms of derivatives.

(i) Fourier transform

Supose that f is continuous and absolutely integrable on the interval (—oco, o) and

f’ is piecewise continuous on every finite interval. If f(x) —» 0 as x — oo, then
integration by parts gives

Flro) = f_ Fl@) e dx = [ f(x) e +ia f_ F(x) €7 dx
= i foo F(x) e gx

That is: T{f’(x)} iaF(a)



Flr®) = iaF(a)

Similarly, under the added assumptions that f’ is continuous on (-0, o), f"’(x) is
piecewise continuous on every finite interval, and f/(x) — 0 as x — +oc0, we have

F{r' ) = (a)*F(e)

In general, under analogous conditions, we have
Fl{rPw) = ()"F

wheren =0,1,2, ....



It is important to realize that the sine and cosine transforms are not suitable for
transforming the first derivatives and in fact any odd-order derivatives:

Fs{f (0] = —aFe(f(x)}  and  F{f' (D)} = aF; (f(0)} - £(0)

as these are not expressed in terms of the original integral transform.



(i) Fourier sine transform (optional)
Suppose f and f’ are continuous, f is absolutely integrable on [0, ) and f”/ is
piecewise continuous on every finite interval. If f — 0 and f/ — 0 as x — oo, then

Fs{f" ()}

foof"(x) sinax dx = [f’(x) sinax]go —afoof’(x) cos ax dx
0 0

= —a[f(x) cos ax]go —a? foo f(x) sinaxdx = af(0) - asz {f(x)}
0
Fs{f'(0)) = —a’F(@)+af(0)
(iii) Fourier cosine transform (optional)

Under the same assumptions, we find the Fourier the Fourier cosine transform of
1 (x) to be

Felf” (0} = —a*F(a) - £'(0)



Properties of the Fourier transform

Let us identify time ¢ with the variable x and the angular frequency w with . Then
the Fourier transform of a function of time f(¢), a signal, produces the spectrum of
the signal in the representation given by the angular frequency w.

1. Linearity
The Fourier transform is a linear operator:

F k1 /1) + ka fo(0)} = k1 F1(w) + ko Fa(w)
where ¥ {f1(1)} = F1(w) and ¥ { /2(1)} = Fa(w).

2. Time translation/shifting
Time translation or shifting by an amount ¢y leads to a phase shift in the Fourier



transform:

F{f(t — tg)} = e “OF (w)

. Frequency translation/shifting

T {0 f(0)} = F(w — wo)

The multiplication of £(¢) by ¢'“o is called the complex modulation. Thus, the
complex modulation in the time domain corresponds to a shift in the frequency
domain.



4. Time scaling
1 w
Ffto) = F(7)
Therefore if ¢ is directly scaled by a factor k, then the frequency variable is
inversely scaled by the factor k. Consequently, for k > 1 we have a time-
compression resulting in a frequency spectrum expansion. For k < 1 there is
a time-expansion and a resulting frequency spectrum compression.

5. Time reversal
This property follows from the time scaling for k = —1

FAf(=D) = F(-w)



6. Symmetry
This property is very useful in evaluation of certain Fourier transforms

FAFO) = 2nf(-w)

7. Fourier transform and inverse Fourier transform of a derivative

7 {?} = wF(w)

7! {—d’;fu‘“)} = ~itf()

8. Fourier transform of an integral

t
F {f f(u) du} = 1F(0)0(w) + %F(w)



9. Fourier transform of a convolution

t
F{f1(0) * f2(0)} = T{j(; f1(m) falt = 7) dT} = Fl(w) F(w)

The counterpart of convolution in the time domain is multiplication in the fre-
quency domain.

10. Fourier transform of a product

1
Fh@ L0} = Fi(w)« Fy(w)



Example 1: Fourier transform of a simple piecewise continuous function

-2, —-n<t<O0
fH)=452, 0<t<nm

0, Otherwise
Solution:
0 —iwt d —iwt 2 —iwt]0 2 —iwt|T
Flw) = (=2)e” W gr+ | Qe dr == [e ] _ = [e ]

- 0 iw T jw 0

2 - : 2

= = [(1 _ em) _ (e—’w” _ 1)] =~ [2 - 2 cos(wn)]
1160, L

Flw) = % [1 — cos(wm)]



Example 2: Fourier transform and ODEs

Find a solution of the Airy equation

/

y'—xy=0

subject to the far field condition limj |, y(x) = 0.

Solution:
The Fourier transform of the equation gives the first order ODE

—k2Y (k) — iY’ (k) = 0.



The equation
—I2Y (k) - iY' (k) = 0

can be solved using the method of separation of variables. This gives the following
result

Y(k) = Celk/3

whose inverse Fourier transfom is

C [+
y(x) = — f exp |itkx + k°/3)| dk.

21 J_ oo

This integral cannot be reduced any further. For C = 1, the result is known as Airy
function and is denoted as Ai(x).



Fourier transform in quantum mechanics

Consider a (one-dimensional) wave function y¥(x). lts Fourier transform is defined
(with a slightly different convention) as

_ 1 too
Y(p) = o f e~ IPXIT () dx
JT — 0

and its inverse as

1 too _
W(x) = o f_ ¢PXIM g(p) dp

where

i) =~k = —i (£

iV
as p = fik, and where (k) = \/Lz—ﬂ f—+ozo e~ kXM y(x) dx.



o-function

The Fourier transform of the 6-function

_ 1 +00 ) 1 .
Oxo(P) = Noro f e P 5(x — x) dx = N e~ iPXo/h
T —00 \/ T

and in particular

1
V 2l

So(p) =

The inverse Fourier transform yields a very useful expression for the d-function

1 +00 1 +00
6(x — xq) = —f e PEX g = —f eK=x0) g
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