Introduction to differential equations: overview
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e Methods of solution of first-order differential equations



Definition: Differential Equation

An equation containing the derivatives of one or more dependent variables, with
respect to one or more independent variables, is said to be a differential equation.

Examples:
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Classification of differential equations
(a) Classification by Type:

Ordinary differential equations - ODE

d?y dy
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Partial differential equations - PDE
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(b) Classification by Order:

The order of the differential equation is the order of the highest derivative in the
equation.
Example:

nth-order ODE:

F (r .y y™) =0 (1)

Normal form of (1)
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(c) Classification as Linear or Non-linear:

An nth-order ODE (1) is said to be linear if it can be written in this form

dy n—1,,
a,,(r)— +a,_ l(r)

dy
e l + ...+ al(.r)a + ap(x)y = g(x)

Examples:
. ' , d3y dy
Linear: (v = x)dx + 4xdy =0 y =2y +y=0 d_ + 3ra -5y =¢"
. dy d’y | -
Nonlinear: —; + },2 =0 ; +sin(y) =0 (1 =y)y +2y=e"

dx dx~



Solution of an ODE:

Any function ¢ defined on an interval I and possessing at least n derivatives that
are continuous on I, which when substituted into an n-th-order ordinary differential
equation reduces the equation to an identity, is said to be a solution of the equation
on the interval.

In other words:
a solution of an nth-order ODE is a function ¢ that possesses at least n derivatives
and

F(x,¢(x),¢"(x),....6"(x)) = 0 (2)

for all x € 1. Alternatively we can denote the solution as y(x).



Interval of definition:

A solution of an ODE has to be considered simultaneously with the interval I which
we call

the interval of definition
the interval of existence,
the interval of validity, or
the domain of the solution.

It can be an open interval (a,b), a closed interval [a, b], an infinite interval (a, co)
and so on.



Example:

Verify that the function y = xe* is a solution of the differential equation
y"" —=2y" +y =0 on the interval (—oo, 00):

From the derivatives

y = xe'+e*
v/ = xe' +2e"
we see
Lh.s. : V' =2y +y=(xe* +2e*) =2 (xe* + ")+ xe* =0

r.h.s. : 0

that each side of the equation is the same for every real number x.

A solution that is identically zero on an interval 1, i.e. y = 0,¥x € [, is said to be
trivial.



Solution curve:

is the graph of a solution ¢ of an ODE.

The graph of the solution ¢ is NOT the same as the graph of the functions ¢ as
the domain of the function ¢ does not need to be the same as the interval I of defini-

tion (domain) of the solution ¢.

Example:

(2) Function y = 1/xx#0 (b) Solution y = 1/x, (0, =)
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Explicit solutions:

a solution in which the dependent variable is expressed solely in terms of the in-
dependent variable and constants.

Example:

2

—

}, - (p(x) -— (’01 X
is an explicit solution of the ODE

dv
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Implicit solutions:

A relation G(x,y) = 0 is said to be an implicit solution of an ODE on an interval
I provided there exists at least one function ¢ that satisfies the relation as well as the

differential equation on 1. “5’:%
Example: «L

3 i ?
2 2 1
x° +y° =25 T
(a) Implicit solution
. . . . . x24+y2=25
is an implicit solution of the ODE "
.
5
dy «x
dx y :_5.::::'4_.:54.:5.:.\-
on the interval (-5, 5). MR NE
) 3 2 L ¥ =Y¥25-x2, -5<x<5
Notice that also x~ + v~ — ¢ = 0 satisfies the ODE above. .
5-

(¢) Explicit solution

= N25-x2, 5<x<5



Families of solutions:
A solution ¢ of a first-order ODE F(x,y,y") = 0 can be referred to as an integral of

the equation, and its graph is called an integral curve.

A solution containing an arbitrary constant (an integration constant) ¢ represents
a set

G(x,y,c) =0
called a one-parameter family of solutions.

When solving an nth-order ODE F(x,y,y’,...y"™) = 0, we seek an n-parameter
family of solutions G(x, y,cy,c2,...,cpn) = 0.

A single ODE can possess an infinite number of solutions!



A particular solution:
is a solution of an ODE that is free of arbitrary parameters.
Example:
. - . ’ r N
y = cx — xcos x is an explicit solution of xy" — y = x“sinx on (—oco, c0).

The solution y = —xcos x is a particular solution corresponding to ¢ = 0.
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A singular solution:

a solution that can not be obtained by specializing any of the parameters in the
family of solutions.

Example:
y = (x2/4 + ¢)* is a one-parameter family of solutions of the DOE dy/dx = xy!/2.

Also y = 0 is a solution of this ODE but it is not a member of the family above.
It is a singular solution.



The general solution:

If every solution of an nth-order ODE F(x, y,’,...,¥"”) = 0 on an interval I can be
obtained from an n-parameter family G(x, y, ¢y, ca, ..., ) = 0 by appropriate choices
of the parameters ¢;, i = 1,2, ..., n we then say that the family is the general solution
of the differential equation.



Systems of differential equations:

A system of ordinary differential equations is two or more equations involving
the derivatives of two or more unknown functions of a single independent variable.

Example:
dx
5. = ta ’
i [, x,y)
dy
A — t
dl_ g( 7'x9y)

A solution of a system, such as above, is a pair of differentiable functions x = ¢(?)
and y = ¢»(¢) defined on a common interval I that satisfy each equation of the system
on this interval.



Initial value problem:

On some interval I containing x, the problem of solving

dny ’ |
—=f R ,(,n))
d-\‘" . (X, Y,V 500y \

subject to the conditions

’ -1
Y(x0) =0, ¥ (x0) = y1s e ¥V (x0) = Vi

where yg, v1, ... , ¥, are arbitrarily specified constants, is called
an initial value problem (IVP).

The conditions y(xg) = yg, ¥ (xg) = ¥1. ... ¥ V(xg) = y,_ are called
initial conditions.



y

First-order and Second-order IVPs:

solutions of the DE

\?

dy

dx
y(xp)

2
d-y

dx2
v(xp)

f(x,y)
Yo

flx,y,y")

Yo
M



Example:
y = ce” is a one-parameter family of solutions of the first order ODE y’ = y on the
interval (—co, c0). !

The initial condition y(0) = 3 determines the constant c:

w0)=3= ce’ = ¢

Thus the function y = 3¢ is a solution of the IVP defined by

vVi=y, y(0)=3

Similarly, the initial condition y(1) = -2 will yield ¢ = —2¢~!. The function y = —2¢*~!
is a solution of the IVP

Y=y, yl)=-2



Existence and uniqueness:
Does a solution of the problem exist? If a solution exist, is it unique?

Existence (for the IVP (3)):
Does the differential equation dy/dx = f(x, y) possess solutions?
Do any of the solution curves pass through the point (xg,vg) ?

Uniqueness (for the IVP (3)):
When can we be certain that there is precisely one solution curve passing through
the point (xp, vo) ?



Example: An IVP can have several solutions
Each of the functions

y =0

y = 16
satisfy the IVP

dy ‘

_} = X}al"’?“

v(0) = 0




Theorem: Existence of a unique solution

Let R be a rectangular region in the xy-plane defined by a < x < b, ¢ < vy < d,
that contains the point (xq, yg) in its interior. If f(x,y) and df/dy are continuous on R,
then there exist some interval Iy: xg —h < x < xg+ h, h > 0, contained ina < x < b,
and a unique function y(x) defined on I, that is a solution of the initial value problem

(3). y
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Distinguish the following three sets on the real x-axis:

the domain of the function y(x);
the interval I over which the solution y(x) is defined or exists;
the interval [, of existence AND uniqueness.

The theorem above gives no indication of the sizes of the intervals I and Iy; the
number h > 0 that defines I could be very small. Thus we should think that the
solution y(x) is unique in a local sense, that is near the point (xp, vp)-
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Example: uniqgueness
Consider again the ODE

dy 14
"
in the light of the theorem above. The functions
flx,y) = xy'/?
af  x

are continuous in the upper half-plane defined by v > 0.

The theorem allow us to conclude that through any point (xg, vg), vo > 0, in the
upper half-plane, there is an interval centered at x(, on which the ODE has a unique
solution.



First-order differential equations

To find either explicit or implicit solution, we need to

(i) recognize the kind of differential equation, and then

(i) apply to it an equation-specific method of solution.



Solution curves without the solution
What a first order ODE can tell us?

Slope

j—i = f(x,y)
The value f(x,y) at the point (x, y) represents the slope of
a lineal element, a miniature tangent line to the solution
at that point.

Example:

d
2 0.2xy

dx
fx,y) = 02xy

At the point (2, 3) the slope of a lineal element is f(2,3) = 1.2.



Direction fields or slope fields

is the collection of all lineal elements evaluated at each point (x,y) of a rectangular
grid.

It provides the appearance or shape of a family of solution curves of the ODE and
allows us to investigate its qualitative aspects.

Example: H B S A Y I e A
- B B B e G, A 4
d | . \ . - » » y [ 4
= 0.2xy ¥ o
dx A A\ N s



Increasing or decreasing solution

Increasing y(x) if for all x € I:

Decreasing y(x) if for all x € I:



Autonomous first-order DE

is DE in which the independent variable does not appear explicitly:

dy
i )
Examples:
Autonomous
dy 2
— =1+
dx Y
Non-autonomous
d
2 0.2xy



Critical points

A real number c is a critical point of the autonomous DE

dy
a—f@) (1)

if it is a zero of f, i.e. f(c) = 0.

A critical point is also called an equilibrium point or stationary point.

If ¢ is a critical point of (1), then y(x) = c is a constant solution of the autonomous
equation.

A constant solution y(x) = ¢ of (1) is called an equilibrium solution;
equilibria are the only constant solutions of (1).



Example: Autonomous ODE

dP
S Pa—-bP
g =~ Pla=5bp)

where a > 0, b > 0. From f(P) = P(a — bP) = 0 we see that 0 and a/b are critical
points of the equation.

By putting the critical points on a vertical line we obtain a one-dimensional phase
portrait of the DE above.

We get three intervals: '
—o0o< P<0,0<P<al/b,a/b< P < o;

the arrows indicate the algebraic sign of f(P) = P(a — bP)

and whether a non-constant solution is increasing or decreasing. ’



Solution curves

We can usually say a great deal about the solution curves of an autonomous DE
even without solving it.

fin (1) is independent of x and thus we may consider it defined for any x.

f and f” are continuous functions of x on some interval I, the fundamental result of
the uniqueness theorem holds in some region R in the xy-plane, and so through any
point (xp, yg) in R passes only one solution curve of (1).



Assume that the solution of (1) possesses exactly two critical points ¢; and ¢;. The
graphs of the equilibrium solutions y(x) = ¢; and y(x) = ¢, are horizontal lines which
partition the region R into three subregions R, R, and Rs3.

Mi)



|
Examp|e: increaing E

dp | |
= P - bP errensing R,
dt (a ) | docosnsing \,’

where a > 0, b > 0. We have three subregions
Rj:—c0<P<0, Ry:0<P<al/b, R3:a/b<P < oo
(i) Pg < 0: P(¢) is bounded from above, P(¢) is decreasing, P(t) —» 0 as t — —oo.

(i) 0 < Py < a/b: P(t) is bounded from both below and above, P(¢) is increasing,
P(t) > 0ast— —ocoand P(t) —» a/bas t — oo.

(i) Pg > a/b: P(t) is bounded from below, P(?) is decreasing, P(t) — a/b as t — oo.



Example:

dy

_ 1\2
a—()’ 1)

has the single critical point 1.

A solution y(x) is an increasing function in both subregions
—co<y<landl<y< oo, where —co < x < 00,

For an initial condition y(0) = yg < 1, a solution y(x) is increasing and bounded above
by 1, s0 y(x) > 1 as x — oo.

For y(0) = yg > 1 a solution y(x) is increasing and unbounded.

A
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y(x) =1-1/(x + ¢) is a one-parameter family of solutions of the DE

dy 2
—_— = — 1
ix y—-1)

The initial condition determines the value of c:

(1) y0)=—-1<1thenc=1/2andsoy(x)=1-1/(x+1/2)
x = —1/2 is the vertical asymptote and y(x) —» —co as x — —1/2 from the right.

(2) y(0)=2>1,wegetc=-landy(x)=1-1/(x—-1).
This function has a vertical asymptote at x = 1 and thus y —» 0 as x — 1.




Attractors and repellers

The critical point ¢ to which the solutions asymptotically converge from both sides is
said to be asymptotically stable. c is referred to as an attractor.

The critical point ¢ from which the solutions asymptotically diverge to both sides is
said to be unstable. c is referred to as an repeller.

There are also critical points which are

neither attractors nor repellers;

they are attracted from one

side of the critical point and

repelled from the other side; #

we say that c is semistable. # i
§ AT
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Mathematical model

is the mathematical descriptions of a system or a phenomenon. Construction:

- identifying variables, including specifying the level of resolution;

- making a set of reasonable assumptions or hypotheses about the system, includ-
ing empirical laws that are applicable; these often involve a rate of change of one or
more variables and thus differential equation.

- trying to solve the model, and if possible, verifying, improving: increasing resolu-
tion, making alternative assumptions etc.

A mathematical model of a physical system will often involve time. A solution of the
model then gives the state of the system, the values of the dependent variable(s),
at a time t, allowing us to describe the system in the past, present and future.



Express assumptions in terms
of differential equation

If necessary,

alter assumptions Solve the DEs
or increase resolution

of the model

Display model predictions,
e.g. graphically



Examples of ordinary differential equations

(1) Spring-mass problem

Newton's law
P dv d?x
=mdad=m-—-—=m—
dr dr?
Hook’s law
F = -kx

By putting these two laws together we get the desired ODE

dz,.f
—; + w?‘x = 0
dr-

where we introduced the angular frequency of oscillation w = Vk/m.

O RN RN



(2) RLC circuit

i(t) - the current in a circuit at time ¢ (}{jo(m |

g(1) - the charge on the capacitor at time t E) L g R
L - inductance

C - capacitance
R - resistance i

A
A —

According to Kirchhoff’'s second law, the impressed voltage E(r) must equal to
the sum of the voltage drops in the loop.

Vi + Ve + Ve = E(1)



Inductor

Capacitor

Resistor

RLC circuit

iy i
VC_%
VR=Ri=R%
L%+R3—?+éq=E(I)
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