Introduction to differential equations: overview

- Definition of differential equations and their classification
- Solutions of differential equations
- Initial value problems
- Existence and uniqueness
- Mathematical models and examples
- Methods of solution of first-order differential equations

Definition: Differential Equation

An equation containing the derivatives of one or more dependent variables, with respect to one or more independent variables, is said to be a differential equation.

Examples:
(i) $\frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}+y^{2}=0$
(ii) $y^{\prime \prime}-2 y^{\prime}+y=0$
(iii) $\ddot{s}=-32$
(iv) $\frac{\partial^{2} u}{\partial x^{2}}=-2 \frac{\partial u}{\partial t}$

Classification of differential equations

(a) Classification by Type:

Ordinary differential equations - ODE

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}+6 y=0
$$

Partial differential equations - PDE

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}-2 \frac{\partial u}{\partial t}
$$

(b) Classification by Order:

The order of the differential equation is the order of the highest derivative in the equation.
Example:
n th-order ODE:

$$
\begin{equation*}
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0 \tag{1}
\end{equation*}
$$

Normal form of (1)

$$
\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}=f\left(x, y, y^{\prime} \ldots, y^{(n-1)}\right)
$$

(c) Classification as Linear or Non-linear:

An n th-order ODE (1) is said to be linear if it can be written in this form

$$
a_{n}(x) \frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}+a_{n-1}(x) \frac{\mathrm{d}^{n-1} y}{\mathrm{~d} x^{n-1}}+\ldots+a_{1}(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+a_{0}(x) y=g(x)
$$

Examples:

$$
\begin{aligned}
& \text { Linear: } \quad(y-x) d x+4 x d y=0 \\
& y^{\prime \prime}-2 y^{\prime}+y=0 \\
& \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}+3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-5 y=e^{x} \\
& \text { Nonlinear: } \quad \frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}+y^{2}=0 \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\sin (y)=0 \quad(1-y) y^{\prime}+2 y=e^{x}
\end{aligned}
$$

Solution of an ODE:

Any function ϕ defined on an interval I and possessing at least n derivatives that are continuous on I, which when substituted into an n-th-order ordinary differential equation reduces the equation to an identity, is said to be a solution of the equation on the interval.

In other words:
a solution of an n th-order ODE is a function ϕ that possesses at least n derivatives and

$$
\begin{equation*}
F\left(x, \phi(x), \phi^{\prime}(x), \ldots, \phi^{(n)}(x)\right)=0 \tag{2}
\end{equation*}
$$

for all $x \in I$. Alternatively we can denote the solution as $y(x)$.

Interval of definition:

A solution of an ODE has to be considered simultaneously with the interval I which we call
the interval of definition
the interval of existence, the interval of validity, or the domain of the solution.

It can be an open interval (a, b), a closed interval $[a, b]$, an infinite interval (a, ∞) and so on.

Example:

Verify that the function $y=x e^{x}$ is a solution of the differential equation $y^{\prime \prime}-2 y^{\prime}+y=0$ on the interval $(-\infty, \infty)$:
From the derivatives

$$
\begin{aligned}
y^{\prime} & =x e^{x}+e^{x} \\
y^{\prime \prime} & =x e^{x}+2 e^{x}
\end{aligned}
$$

we see

$$
\begin{array}{ll}
\text { l.h.s. }: & y^{\prime \prime}-2 y^{\prime}+y=\left(x e^{x}+2 e^{x}\right)-2\left(x e^{x}+e^{x}\right)+x e^{x}=0 \\
\text { r.h.s. : } & 0
\end{array}
$$

that each side of the equation is the same for every real number x.
A solution that is identically zero on an interval I, i.e. $y=0, \forall x \in I$, is said to be trivial.

Solution curve:

is the graph of a solution ϕ of an ODE.

The graph of the solution ϕ is NOT the same as the graph of the functions ϕ as the domain of the function ϕ does not need to be the same as the interval I of definition (domain) of the solution ϕ.

Example:

Explicit solutions:

a solution in which the dependent variable is expressed solely in terms of the independent variable and constants.

Example:

$$
y=\phi(x)=e^{0.1 x^{2}}
$$

is an explicit solution of the ODE

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=0.2 x y
$$

Implicit solutions:

A relation $G(x, y)=0$ is said to be an implicit solution of an ODE on an interval I provided there exists at least one function ϕ that satisfies the relation as well as the differential equation on I.

Example:

$$
x^{2}+y^{2}=25
$$

is an implicit solution of the ODE

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{y}
$$

on the interval $(-5,5)$.
Notice that also $x^{2}+y^{2}-c=0$ satisfies the ODE above.
 $x^{2}+y^{2}=25$

(b) Explicit solution $y_{1}=\sqrt{25-x^{2}},-5<x<5$

Families of solutions:

A solution ϕ of a first-order ODE $F\left(x, y, y^{\prime}\right)=0$ can be referred to as an integral of the equation, and its graph is called an integral curve.

A solution containing an arbitrary constant (an integration constant) c represents a set

$$
G(x, y, c)=0
$$

called a one-parameter family of solutions.
When solving an n th-order ODE $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0$, we seek an n-parameter family of solutions $G\left(x, y, c_{1}, c_{2}, \ldots, c_{n}\right)=0$.

A single ODE can possess an infinite number of solutions!

A particular solution:

is a solution of an ODE that is free of arbitrary parameters.

Example:
$y=c x-x \cos x$ is an explicit solution of $x y^{\prime}-y=x^{2} \sin x$ on $(-\infty, \infty)$.

The solution $y=-x \cos x$ is a particular solution corresponding to $c=0$.

A singular solution:

a solution that can not be obtained by specializing any of the parameters in the family of solutions.

Example:
$y=\left(x^{2} / 4+c\right)^{2}$ is a one-parameter family of solutions of the DOE $d y / d x=x y^{1 / 2}$.

Also $y=0$ is a solution of this ODE but it is not a member of the family above. It is a singular solution.

The general solution:

If every solution of an n th-order ODE $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0$ on an interval I can be obtained from an n-parameter family $G\left(x, y, c_{1}, c_{2}, \ldots, c_{n}\right)=0$ by appropriate choices of the parameters $c_{i}, i=1,2, \ldots, n$ we then say that the family is the general solution of the differential equation.

Systems of differential equations:

A system of ordinary differential equations is two or more equations involving the derivatives of two or more unknown functions of a single independent variable.

Example:

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=f(t, x, y) \\
& \frac{\mathrm{d} y}{\mathrm{~d} t}=g(t, x, y)
\end{aligned}
$$

A solution of a system, such as above, is a pair of differentiable functions $x=\phi_{1}(t)$ and $y=\phi_{2}(t)$ defined on a common interval I that satisfy each equation of the system on this interval.

Initial value problem:

On some interval I containing x_{0}, the problem of solving

$$
\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)
$$

subject to the conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}
$$

where $y_{0}, y_{1}, \ldots, y_{n-1}$ are arbitrarily specified constants, is called an initial value problem (IVP).

The conditions $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$ are called initial conditions.

First-order and Second-order IVPs:

$$
\begin{align*}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =f(x, y) \\
y\left(x_{0}\right) & =y_{0} \tag{3}
\end{align*}
$$

solutions of the DE

$$
\begin{align*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} & =f\left(x, y, y^{\prime}\right) \\
y\left(x_{0}\right) & =y_{0} \\
y^{\prime}\left(x_{0}\right) & =y_{1} \tag{4}
\end{align*}
$$

Example:

 interval $(-\infty, \infty)$.

The initial condition $y(0)=3$ determines the constant c :

$$
y(0)=3=c e^{0}=c
$$

Thus the function $y=3 e^{x}$ is a solution of the IVP defined by

$$
y^{\prime}=y, \quad y(0)=3
$$

Similarly, the initial condition $y(1)=-2$ will yield $c=-2 e^{-1}$. The function $y=-2 e^{x-1}$ is a solution of the IVP

$$
y^{\prime}=y, \quad y(1)=-2
$$

Existence and uniqueness:

Does a solution of the problem exist? If a solution exist, is it unique?

Existence (for the IVP (3)):
Does the differential equation $d y / d x=f(x, y)$ possess solutions?
Do any of the solution curves pass through the point $\left(x_{0}, y_{0}\right)$?

Uniqueness (for the IVP (3)):
When can we be certain that there is precisely one solution curve passing through the point $\left(x_{0}, y_{0}\right)$?

Example: An IVP can have several solutions

Each of the functions

$$
\begin{aligned}
& y=0 \\
& y=x^{4} / 16
\end{aligned}
$$

satisfy the IVP

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =x y^{1 / 2} \\
y(0) & =0
\end{aligned}
$$

Theorem: Existence of a unique solution

Let R be a rectangular region in the $x y$-plane defined by $a \leq x \leq b, c \leq y \leq d$, that contains the point $\left(x_{0}, y_{0}\right)$ in its interior. If $f(x, y)$ and $\partial f / \partial y$ are continuous on R, then there exist some interval $I_{0}: x_{0}-h<x<x_{0}+h, h>0$, contained in $a \leq x \leq b$, and a unique function $y(x)$ defined on I_{0}, that is a solution of the initial value problem (3).

Distinguish the following three sets on the real x-axis:
the domain of the function $y(x)$;
the interval I over which the solution $y(x)$ is defined or exists;
the interval I_{0} of existence AND uniqueness.

The theorem above gives no indication of the sizes of the intervals I and I_{0}; the number $h>0$ that defines I_{0} could be very small. Thus we should think that the solution $y(x)$ is unique in a local sense, that is near the point $\left(x_{0}, y_{0}\right)$.

Example: uniqueness
Consider again the ODE

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x y^{1 / 2}
$$

in the light of the theorem above. The functions

$$
\begin{aligned}
f(x, y) & =x y^{1 / 2} \\
\frac{\partial f}{\partial y} & =\frac{x}{2 y^{1 / 2}}
\end{aligned}
$$

are continuous in the upper half-plane defined by $y>0$.
The theorem allow us to conclude that through any point $\left(x_{0}, y_{0}\right), y_{0}>0$, in the upper half-plane, there is an interval centered at x_{0}, on which the ODE has a unique solution.

First-order differential equations

To find either explicit or implicit solution, we need to
(i) recognize the kind of differential equation, and then
(ii) apply to it an equation-specific method of solution.

Solution curves without the solution

What a first order ODE can tell us?
Slope

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)
$$

The value $f(x, y)$ at the point (x, y) represents the slope of a lineal element, a miniature tangent line to the solution at that point.

Example:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =0.2 x y \\
f(x, y) & =0.2 x y
\end{aligned}
$$

At the point $(2,3)$ the slope of a lineal element is $f(2,3)=1.2$.

Direction fields or slope fields

is the collection of all lineal elements evaluated at each point (x, y) of a rectangular grid.

It provides the appearance or shape of a family of solution curves of the ODE and allows us to investigate its qualitative aspects.

Example:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=0.2 x y
$$

Increasing or decreasing solution

Increasing $y(x)$ if for all $x \in I$:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}>0
$$

Decreasing $y(x)$ if for all $x \in I$:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}<0
$$

Autonomous first-order DE

is DE in which the independent variable does not appear explicitly:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(y)
$$

Examples:

Autonomous

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=1+y^{2}
$$

Non-autonomous

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=0.2 x y
$$

Critical points

A real number c is a critical point of the autonomous DE

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(y) \tag{1}
\end{equation*}
$$

if it is a zero of f, i.e. $f(c)=0$.

A critical point is also called an equilibrium point or stationary point.

If c is a critical point of (1), then $y(x)=c$ is a constant solution of the autonomous equation.

A constant solution $y(x)=c$ of (1) is called an equilibrium solution; equilibria are the only constant solutions of (1).

Example: Autonomous ODE

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=P(a-b P)
$$

where $a>0, b>0$. From $f(P)=P(a-b P)=0$ we see that 0 and a / b are critical points of the equation.

By putting the critical points on a vertical line we obtain a one-dimensional phase portrait of the DE above.

We get three intervals:
$-\infty<P<0,0<P<a / b, a / b<P<\infty ;$
the arrows indicate the algebraic sign of $f(P)=P(a-b P)$ and whether a non-constant solution is increasing or decreasing.

Solution curves

We can usually say a great deal about the solution curves of an autonomous DE even without solving it.
f in (1) is independent of x and thus we may consider it defined for any x.
f and f^{\prime} are continuous functions of x on some interval I, the fundamental result of the uniqueness theorem holds in some region R in the $x y$-plane, and so through any point (x_{0}, y_{0}) in R passes only one solution curve of (1).

Assume that the solution of (1) possesses exactly two critical points c_{1} and c_{2}. The graphs of the equilibrium solutions $y(x)=c_{1}$ and $y(x)=c_{2}$ are horizontal lines which partition the region R into three subregions R_{1}, R_{2} and R_{3}.

Example:

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=P(a-b P)
$$

where $a>0, b>0$. We have three subregions

$R_{1}:-\infty<P<0, \quad R_{2}: 0<P<a / b, \quad R_{3}: a / b<P<\infty ;$
(i) $P_{0}<0: P(t)$ is bounded from above, $P(t)$ is decreasing, $P(t) \rightarrow 0$ as $t \rightarrow-\infty$.
(ii) $0<P_{0}<a / b: P(t)$ is bounded from both below and above, $P(t)$ is increasing, $P(t) \rightarrow 0$ as $t \rightarrow-\infty$ and $P(t) \rightarrow a / b$ as $t \rightarrow \infty$.
(iii) $P_{0}>a / b: P(t)$ is bounded from below, $P(t)$ is decreasing, $P(t) \rightarrow a / b$ as $t \rightarrow \infty$.

Example:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=(y-1)^{2}
$$

has the single critical point 1.

A solution $y(x)$ is an increasing function in both subregions $-\infty<y<1$ and $1<y<\infty$, where $-\infty<x<\infty$.

For an initial condition $y(0)=y_{0}<1$, a solution $y(x)$ is increasing and bounded above by 1 , so $y(x) \rightarrow 1$ as $x \rightarrow \infty$.

For $y(0)=y_{0}>1$ a solution $y(x)$ is increasing and unbounded.
$y(x)=1-1 /(x+c)$ is a one-parameter family of solutions of the DE

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=(y-1)^{2}
$$

The initial condition determines the value of c :
(1) $y(0)=-1<1$ then $c=1 / 2$ and so $y(x)=1-1 /(x+1 / 2)$
$x=-1 / 2$ is the vertical asymptote and $y(x) \rightarrow-\infty$ as $x \rightarrow-1 / 2$ from the right.
(2) $y(0)=2>1$, we get $c=-1$ and $y(x)=1-1 /(x-1)$.

This function has a vertical asymptote at $x=1$ and thus $y \rightarrow \infty$ as $x \rightarrow 1$.

Attractors and repellers

The critical point c to which the solutions asymptotically converge from both sides is said to be asymptotically stable. c is referred to as an attractor.

The critical point c from which the solutions asymptotically diverge to both sides is said to be unstable. c is referred to as an repeller.

There are also critical points which are neither attractors nor repellers; they are attracted from one side of the critical point and repelled from the other side; we say that c is semistable.

Frank and Ernest

Copyright (c) 1990 by Thaves. Distributed from www.thecomics.com.

Mathematical model

is the mathematical descriptions of a system or a phenomenon. Construction:

- identifying variables, including specifying the level of resolution;
- making a set of reasonable assumptions or hypotheses about the system, including empirical laws that are applicable; these often involve a rate of change of one or more variables and thus differential equation.
- trying to solve the model, and if possible, verifying, improving: increasing resolution, making alternative assumptions etc.

A mathematical model of a physical system will often involve time. A solution of the model then gives the state of the system, the values of the dependent variable(s), at a time t, allowing us to describe the system in the past, present and future.

Examples of ordinary differential equations

(1) Spring-mass problem

Newton's law

$$
F=m a=m \frac{\mathrm{~d} v}{\mathrm{~d} t}=m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}
$$

Hook's law

$$
F=-k x
$$

By putting these two laws together we get the desired ODE

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+\omega^{2} x=0
$$

where we introduced the angular frequency of oscillation $\omega=\sqrt{k / m}$.
(2) RLC circuit
$i(t)$ - the current in a circuit at time t
$q(t)$ - the charge on the capacitor at time t
L - inductance
C - capacitance
R - resistance

According to Kirchhoff's second law, the impressed voltage $E(t)$ must equal to the sum of the voltage drops in the loop.

$$
V_{L}+V_{C}+V_{R}=E(t)
$$

Inductor

$$
V_{L}=L \frac{\mathrm{~d} i}{\mathrm{~d} t}=L \frac{\mathrm{~d}^{2} q}{\mathrm{~d} t^{2}}
$$

Capacitor

$$
V_{C}=\frac{q}{C}
$$

Resistor

$$
V_{R}=R i=R \frac{\mathrm{~d} q}{\mathrm{~d} t}
$$

RLC circuit

$$
L \frac{\mathrm{~d}^{2} q}{\mathrm{~d} t^{2}}+R \frac{\mathrm{~d} q}{\mathrm{~d} t}+\frac{1}{C} q=E(t)
$$

