Translation on the r-axis
Definition: Unit step function / Heaviside function

The unit step function U (r — a) is defined to be %

0, OD<tr<a e
l. 1= a.

'Ll(t—a)={

Remarks: a

(i) We define the function U (1 — a) only on the non-negative r-axis since we are
concerned with the Laplace transform.



(i) When a function f(z) is multiplied by U (1 — a), the unit step function turns off a
portion of the graph of that function.

Example: f(1) = 2t — 3 multiplied by U (r — 1) has the portion of f(r) on the interval
0 <t < 1 turned off (zero); the function is on for ¢ > 1.

(iii) The unit step function can be used to write piecewise-defined functions in a com-
pact form.

Example: Considering 0 <t < 2,2 <t < 3,1t = 3 and the corresponding values of
U (t - 2) and U (1t — 3), the piecewise-defined function in the figure can be written

fO=2-3U{E-2)+U(t-3) f(0




A general piecewise-defined function

.| &g, 0O0=<t<a
f(’)'{h(r), t>a.

iIs the same as

f()=gt)—g)U(t —a)+h(DOU(t - a)
Similarly

03 0 g I <
f(ny=4 g, a<t<b
0, t>b.
is the same as

f(t) =g [U(t—a)— U - b)]



Example 5:

: 201, 0<r<35
fm—{(), 1> 5.

a=>5,g(t)=20t, h(t) = 0:

f(t) =20t =20t Ut - 5)

f(0)
100 4

e
e
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Consider a general function y = f(r). For a > 0, the graph of the piecewise-defined
function

0, O<t<a

fe-aU(t-a)= { ft-a), 1za.

coincides with the graph y = f(t — a) for t > a (which is the entire graph of f(7),1 >0
shifted a units to the right) but is identically zero for 0 <t < a.
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(a) f(1).120 (b) f(t—a) U(t - a)



Theorem: Second translation theorem

If F(s)=L{f(1)} and a > 0, then

L{f(t—a)U(t—a)} = e “F(s) (3)

Proof:

LIf(t-a)U (- a))

f\a e_‘”f(t —a)U(t—a) dt + jw e_‘"f(t —a)U (t—a) dt
0 a

- f» e f(t—a)dt

Using the substitution v = r — @ and dv = dt in the last integral, we get

L {f(t _ a) (u(f _ (I)} — fw e—.\'(l-"{'(l.)f'(v) dl" - e—(lS fm e—Sl-'f'(v) dv — e—as.ﬁ {f(t)}
0 0



The Laplace transform of a unit step function, i.e. f(t—a) = 1

-y
e(l

LU —-a) = -
Example: f(1)=2-3U (@t -2)+U(t-3)

S
e L8

1
2L -3 L UG -D}+ LIUG-3)} =2 i 3

A

Inverse form of the second translation theorem:

If () = L~V {F(s)}, the inverse of the theorem, with @ > 0, is

L] {e“”F(s)} = f(t — @)U (1 - q)

+_



Example 6:
(a) L7} {ﬁe—‘?s}: with the identification a = 2, F(s) = 1/(s — 4), L~ {F(s)} = ¢¥, we
have

! { % e—?.s} _ M2 q (g~ 2)
A

(b) £~ {~—*'e—’“'/ 2}: with @ = /2, F(s) = s/(s* +9), L~ {F(s)} = cos 3t, we get

5249

-1 S -ns/2| _ _ —
L {sz+9€ } cos3(t—nm/2) U (t—m/2)

Verify that using the addition formula for the cosine the result is the same as
—sin3t U (1t —n/2).



Alternative form of the second translation theorem
How do we find the Laplace transform of g(1)U (1t — a) ?
Using the substitution u = r — a and the definition of U (t — a)

Lligh Ut —a)) = fw e o(t) dt = j(; “"“”g(u +a) du

Lig) Ut - a)}

e Ligt + a))

Example:

L {IZ’L( (1t — 2)} = e‘z"'.ﬁ{(t B 2)2} =e 35S {tz + 41 + 4} = e™2" (— + =+ -



Example 7: L {cost U (1 — m)}
Here g(r) = cost, a = m, and then g(t+m) = cos(t+ m) = — cost by the addition formula
for the cosine. Thus

Lleost U (=) = - Llcosr) = e
5=




Example 8: an IVP

0, O<tr<nm
3cost, [ > m.

"+y=f(, y0)=5, where [f(1)= {

The function f(r) can be written as f(r) = 3cost U (t — m) and so by linearity, the
results of Example 7 and the usual partial fractions, we have

L {.\”} + Ly} = 3L{cost U (t—m))
sY(s) —}'(0) +Y(s) = -3 7‘9 e TS
s+ 1
| . 1 : ,
Y(s) = > _3 - e T 4 e TS 4 o o TS
s+1 2| s+1 §2 + 1 2+ 1



It follows with a = & that the inverses of the terms in the bracket are

e My (t =)

I
——,
=
+ | -
—
r'.‘t‘l
>,
-
| ——
I

sin(t —m)U (t — m)

|
o —
L
[ L
+ —
—
r.‘:‘I
=
-5
|
I

cos(t — m)U (t = )

)

52+ 1
Thus the inverse of Y(s) is

y1) = Se '+ %e_(’_”)’u (t—m) — %sin(t -m)U(t—nm) - %cos(f -mU(t—m)

3 i
= S5¢ '+ 5 [e_(’_”) + sint + cos t] U (t —m)
or

Se~!+ 3¢~ 4 Jgint + %cos [ [ 2 m. y

{58", O<t<n
2
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Additional operational properties

How to find the Laplace transform of a function f(r) that is multiplied by a monomial
1", the transform of a special type of integral, and the transform of a periodic function?

Multiplying a function by "

i — i ” =S5t g It — ooi =5t p _ ~ -5t , ¢ _ .
5o = 3| e f(t)dt_L as[“ f0 dt_—j; et (1) dt = —L |t (1))

that is

d
Lt f(0)) = -a-E{f(I)}
Similarly

3

2 oonl oy 4 o dfd N d
L[r f(r)} = Lirt f)) = L1 f()} = ds( dSL{J‘(f)})— dSEL{f(I)}



Theorem: Derivatives of transforms

If F(s)=L{f(n}andn =1,2,3,... then

dn
L{" f(n} = (-1D)" ﬁF(S)
5

Example 1: £ {t sinkt}

With f(r) = sinkt, F(s) = k/(s* + k%), and n = 1, the theorem above gives

’ d ‘ d k 2ks
Lirsinkt) = —gel{sinkr} = =< (s?- + kz) (52 +k2)2

Evaluate £ {12 sin kr} and .[,'{13 sin kt}.



Example 2: x”" + 16x =cosdr, x(0)=0, x'(0)=1

The Laplace transform of the DE gives

o) )
s+ 160)X(s) =1+
( )X(s) s2 4+ 16

| N s
s2+16 (52 +16)2

X(s) =

In the example 1 we have got

2ks
-1 oy
L {(52 N kz)z} =t sinkt

and so with the identification k = 4, we obtain

| _l 1 4 l ~1 8s _
=1L {32+ 16}+ gL {(32+ 16)2} =

|
4

|
sin 41 + § ! sindt



Transforms of Integrals

Convolution

If functions f and g are piecewise continuous on [0, co) then a special product, f * g,
defined by the integral

t
f+g= L f(r)e(t — T)dr (2)

is called the convolution of f and g. The convolution f * g is a function of 1.
Example:

' |
e % sint = f e'sin(t — 1) dt = 5(—5int—cost+e’)
0



The convolution of two functions is commutative:

! t
f*xg= jo f(n)g(t—1)dr = fﬂ ft=1)g(r)dr =g * f (3)

The Laplace transform of the convolution f g is the product of Laplace transforms of
f and g, thus we can find the Laplace transform of the convolution without performing
the convolution integral.

Convolution theorem

If f(r) and g(1) are piecewise continuous on [0, co) and of exponential order, then

LIf *gh=LIf(N} L{gD} = F(5)G(s). (4)

The Proof: see D.G. Zill et al., Advanced Engineering Mathematics, 4th Ed., p.222.



Example 3

1 1

L[e'*sintl = L{ftersin(t— T) dr} = L{e’}.ﬁ{sint} =
0 '

s=1's241  (s—D(s2+ 1)

Inverse form of the convolution theorem

L7YF($)G(s)) = f g (5)



Exmnme4:£"{ ] }

(.1."‘2-1—1\'?'):'1
Let
F(s) =G(s) =
(5) (5) T2
then
: | k |
f(r) =g() = EL {32 +k2} = Zsmkr

and

| 1 [
-1 . .
L {m} = k_zj(; sinktsink(t — 7)dt



Using

|
sinAsinB = E[cos(A — B) — cos(A + B)]

with A = kT and B = k(t — 7), we can carry out the integration

1 1
£ {(32 +k2)2}

1 t
17 f sinktsink(t — 7)dr
=J0

l t
— cosk(2t —1t) — cos ktldr
Zkzj;[ (2r-1) 1

t
= # [ﬁ sink(2t — 1) — Tcos kt .

sin kt — kt cos kt
2k3

(6)



Transform of an integral

When g(r) = 1 and L {g(1)} = G(s) = 1/s, the convolution theorem implies that the
Laplace transform of the integral of f is

t
1:{ f ) dr} O] )
0 s

The inverse form of the equation above

¢ F(.
f@dr= £ {L;)} (8)

can be used instead of partial fractions when s" is a factor of the denominator and
f(t) = L7V {F(s)} is easy to integrate.



Examples:

L }
L {s(s2+l)

1 1 o 1/s(s2+1)}_f’ ) L
L {52(s2+l)} = L { - = 0(1 cosT) dT =t — sint

-1 1 o fUsSEED 1y
L {33(S2+1)} = L { - }—j(;(r smr)dr—zt 1 + cost

2 t
.E_l{l/(s +1)}=fsinrdr=l—cosr
0

s

and so on.



Volterra integral equation

The convolution theorem and the Laplace transform of integrals are useful for solving
types of equations in which an unknown function appears under an integral sign.

For example, we can solve a Volterra integral equation for f(r)

t
f(t) = g(t) + ) f(Dh(t - 1) dt (9)

The functions g(r) and h(t) are known. Notice that the integral above is of the convo-
lution form.



Example 5: An integral equation
Solve

t
f()y =3¢ - f f(r) T dr
0
for f(1).

We identify h(t — 7) = ¢!, s0 h(t) = ¢' and take the Laplace transform of each term;
in particular the integral transforms as the product of L{f(r)} = F(s) and L {e’ } =
1/(s—1):

2 | |

F(s)=3.— - —— = F(s).
(5) 3 s+ 1 (g)s—l




After solving the equation for F(s) and carrying the partial fraction decomposition,
we get

the inverse Laplace transform then gives

a2 )3 L)
S R e ST b Tl P

32— +1 -2

J(1)



Series circuits

Recall that in a single-loop or series circuits, Kirchhoff's second law states that the
sum of the voltage drops across an inductor, resistor, and capacitor is equal to the
impressed voltage E(t). The voltage drops across an inductor, resistor and capacitor
are, respectively,

Lg R i(1) and lj‘ri(r) dr
dr’ i C Jo

where i(r) is the current, and L, R, and C are constants. It follows that the current in
a circuit is govern by the integrodifferential equation

Ldi + R (1) + : ft i(t) dr = E(1)
—_ — , ar =
dr C Jo

~—=



Example 6: An integrodifferential equation

Determine the current i(r) in a single-loop LRC-circuit when L = 0.1 h, R = 2 Q,
C = 0.1 f,i(0) = 0, and the impressed voltage is

Et)y=120r =120t U(t- 1)

Using the data above, the integrodifferential equation we are to solve is

: t
U.l$+2i(t)+ l(}f (T)dr =120t =120t U(t - 1)
0



Using L{ﬂi(r) dr} = I(s)/s, where I(s) = L{i(1)}, the Laplace transform of the
equation is

I(5) | I 1
0.1sH(s)+21(s)+ 10— =120|—=— —e " — =€
§ 32 5'2 A

where we have used L {g(t)U(t — a)} = e L {g(t + a)} (see the section on the sec-
ond translation theorem). Solving the equation above for I(s) yields

' | | ! | ,
I(s) = 1200 ~ et - —°
| s(s + 10)2  s(s + 10)2 (s + 10)2

[1/100  1/100 1/10 1/1008_S

| s s+ 10 (5+ 10)2 s

) 1/1006_5,+ 1/10 5 _ 1 8_5.‘
s+ 10 (s + 10)2 (s + 10)2

1200




From the inverse form of the second translation theorem, we obtain the current

i)y = 12[1-U@E-1)]-12 [e‘”” — e 100Dy - 1)]
—120te” 1 — 1080(1 = De D qrr - 1)

which can be rewritten as the piecewise-defined function

i< 12- 127107 — 120771, | 0<r<l
T =127 19 4 12071000 1200719 10807 — 1e” 100D 45,
i
20llllllllllllllllllll|IIII

10[/ -
0 f

—10k 4




Transform of a periodic function

Periodic function

If a periodic function f has period T, T > 0, then f(t + T) = f(1).
Theorem: Transform of a periodic function

If f(r) is a piecewise continuous on [0, o), of exponential order, and periodic with

period T, the
1 r .
T fo e f(1) dt

The Proof: see D.G. Zill et al., Advanced Engineering Mathematics, 4th Ed., p.226.

L{f(D} =



Example 7: Transform of a periodic function

Find the Laplace transform of the square wave E(t) with the period T = 2. For
0 <1 < 2, it can be defined by

1, D<r<l
0, 1 <t <?2.

E(r) = {

and outside of the interval by f(r + 2) = f(1). From the theorem above, we have

2

| 2 | L 2
LIE()) = f e SUE(D) dt = [ f e S dt + f e‘-"oml
1 — 8—25 0 1 — e—?_s 0 1

| | ] | —e*

| —e= 25 & - (1+e (1l —e%) 5

E(1)

l—ﬁl ﬁ F
I
I
[
I
1

| | |
| | |
! ! !
2 3 4



Example 8: A periodic impressed voltage

E(1)
Determine the current i(r) in a single-loop LR-series circuit [ -

B
]

P e —
o

L2+Ri= E(1)
dr

where E(1) is the same function that we studied in the previous example and i(0) = 0

The Laplace transform of the differential equation is
|
s(1+e™9)

1/L 1
s(s+R/L) 1 +e%

LsiI(s)+RI(s)

or

I(s)



1/L 1

1) = GTRID Tre

To find the inverse Laplace transform of the last expression, we identify x = ¢™°,

s > 0, and use the geometric series

1 3

2
= l-x+x"—ux

+ ...
1l +x
| . . :
— = l-—e e B4
_ L+ N
From the partial fraction decomposition
1 L/R L/R

ss+R/L) s  s+R/L
we can rewrite I(s) as
1 /1 | . 7 !
I(s) = —|—-— 11—+ _““—._3“+...
() R(s s+R/L)( ¢ Te e )
] (1 e~ s E—Qs €—3s ] ] ( 1 =S E—Zs €—3s
+ ..

- — - + - + ...
R\s+R/L s+R/L s+R/L s+R/L

R

A § § §



By applying the second translation theorem to each term of both series we get
1
(1) = E(l—ﬂ(r—l)+’L((t—2)—’L((t—3)+...)

- é(e‘R’/L — e REDILqrs - 1)+ e REDILqpp —2) — e REIDILqpp - 3) + )

or equivalently

i(1) = }1_8( _Rt/l‘ Z (— l)" e_R“_")/L)’U (t —n)



To interpret the solution, let us assume for illustrationthat R =1, L=1and 0 <t < 4,
We get

i(t)=1—-e¢" -(1 -~ e‘“‘“)'u(z— 1)+ (1- e_“_z))’LI(I— 2) - (1- e‘“‘3’)'Ll(z— 3)

or in other words

(1 - et 0<t<l1
_ —e~t &+ e—(t—l), 1 <t<?2
() =9 | _ ot 4 o (=1) _ p=(-2), 2<1<3
| —e eI 7D (73 3 <1< 4

i
2llllllllllllllllllll

1.5F x
> o

0.5 /\/\-
0 !




The Dirac delta function

Unit pulse
(0, O0<t<iy—a
k 0, rzip+a
a>0,1>0.

For a small value of a, é,(1 — 1) is essentially a constant function of large magnitude
that is "on" for just a very short period of time, around 1. As a — () the magnitude of
the unit pulse grows to co while the area under the unit pulse is constant and equals

to 1:

0

y
12a+

ro
pu
Y

)

B e v

4]



s e s s s (e s ———

R el ] e R ———

—— —— —— . e e e e e e e e e ]

R e el ] S ——

el

=1y
I#1p

m’
0,

lim 6,4(1 — 1p)

a—()

j‘m6(t—to) dt = 1.
0

ot = 1p)
and it can be characterized by two properties:
(i)
5(t — tp)

is defined as the limit of the unit pulse

The Dirac delta "function”

(ii)




It is possible to obtain the Laplace transform of the Dirac delta function by the formal
assumption that £ {6(r — 19)} = lim,_,o L{d.(t — 19)}-

Theoremn: Transform of the Dirac delta function
Fort >0

L6t —19)) = e %10 (12)

Proof:  dult—10) = 5 [U(~ (g~ @)~ U~ (1g + )]

1 [ 50— e—s{ro+a)} L ( e — e—sa)

L{‘Sa(f - IO)} = -

2a s s 25a
' e _ o5 ‘
£{5(t - IO)} = lim £ {(Sa([ - t{])} = ¢ %0 lim ( ) — ¢ 510
" a—0 2sa

Now, when 1y = 0, L{é(r)} = 1. This emphasizes the fact that the delta "function” is
not a usual type of function, since we expect L {f(r)} —» 0 as s — oo.



Example: Two initial value problems (the delta-function kicked oscillator)
Solve v"" +y = 46(t — 2m) subject to (a) y(0) = 1, y'(0) = 0, and (b) w0) = 0, y'(0) = 0.

(a) The Laplace transform of the DE is

2 i, § 4e=27s
sY(s)— s+ Y(s)=4e = Y(s) = — +
s2+1 s2+1

Using the inverse form of the second translation theorem, we get

y(t) = cost+ 4sin(t — 2m)U (1t — 2nm)
and since sin(r — 2m) = sint, the solution can be rewritten as

W(E) = cost, 0<r<2m
. | cost+4sint, t > 2m. v




(b) The transform of the DE in this case is simpler

46,—212’.9

Y(s) =
(5) 52+ 1

and so the final result is
y(1) = 4sin(t — 2m)U (1t — 27)

or
V(t) = 0, 0<t<2nm
ST 4sint,  t = 2nm.

AW

} f
2 \/47r



Remarks:

(i) The delta function is not a proper function but rather an example of distribution. It
is best characterized by its effect on the other functions: if f is a continuous function
then

ff(l) o(t — 1) dt = f(1p)

This is known as the sifting property.

(i) Recall that the transfer function of a general nth-order DE with constant coeffi-
cients is W(s) = 1/P(s) where P(s) = a,s" + a,,_ ls"" + ... + ap. The transfer function
is the Laplace transform of function w(r) called the weight function of a linear sys-
tem.

How does this work if the input is impulsive, i.e. it has the form of the delta function?



Consider the second-order linear system in which the input is the unit impulse at
r=20
apy” +apy’ +agy =61, y0)=0, ' (0)=0.

Applying the Laplace transform and using £ {6(r)} = 1 shows that the transform of
the response y in this case is the transfer function

1 o
ars* +ays+ag P(s)

Y(s) = = Wi(s)

and so

y=L"1 {%ﬂ} = w(1)

Thus, in general, the weight function y = w(r) of an nth-order linear system is the
zero-state response of the system to a unit pulse, and for this reason w(t) is called
the impulse response of the system.



