Special functions

- Bessel’s equations



Special Functions

The differential equation

2y +xy + (2 =vH)y =0
is called Bessel's equation of order v. It occurs frequently in advanced studies in
applied mathematics, physics and engineering.

Its solutions are called Bessel functions.

In following we will assume that v > 0 and we will seek series solutions of Bessel's
equation about x = 0 which is its regular singular point.



The solution:
Since x = 0 is a regular singular point of Bessel’s equation, there is at least one
solution of the form y(x) = X cp X

Substituting this into the equation gives
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We see that the indicial equation is 2 — v? = 0, so the roots are r; = v and r, = —v.

When r; = v, the equation above becomes

(0.0 (o]
x’ Z con(n + 2)x" + x¥ Z cpx'tt2
n=1 n=0

= X1 +2v)cpx + Z can(n + 2v)x' + Z cnx”+2]
i n=2 n=0

= X1 +2v)c1x + Z[(k +2)(k + 2 + 2V)Cpan + ck]xk+2] = 0.
| k=0
Therefore (1 +2v)cy = 0and (k + 2)(k + 2 + 2v)cp40 + ¢ = 0.



The relation (k + 2)(k + 2 + 2v)ciyo + ¢ = 0 imply the recurrence

- C k=0,1,2... .
K2 = )k +2+27)

From (1 + 2v)c1 = 0, the choice ¢; = 0 implies ¢z =c5--- = 0.

Fork=0,2,4... wefindlettingk+2=2n,n=1,2,3,..., that
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Thus explicitly
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It is standard to choose c( to be a specific value, namely

1
2T +v)
where I'(1 + v) is the gamma function.
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Gamma function
Euler’s integral definition:

I(x) = f # et ar,
0

Though this integral does not converge for x < 0, it can be shown by other definitions
that the gamma function is defined for all real and complex values except

x=-n, n=0,1,2,....

The gamma function has a convenient property

I'(1 + @) =al(a).

When n is a positive integer
I'n+1)=n!
so the gamma function is often called generalized factorial function.




The recurrence property gamma function I'(1 + @) = al'(@) allows us to reduce the
product in the denominator of ¢y, to one term. For example

I'l+v+1) = (A+v)I'(+v)
I[(1+v+2) = CQ+vI2+v)=QC+v(A+wI+v).

SO we can write

_ (=1)" _ (-D)"
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forn=0,1,2... .



Bessel functions of the first kind

The series solutiony = > ¢ x2"* is usually denoted
y n=0¢2n y

hin = 3 (5

i n!T(1 +v +n) \2

If v > 0, the series converges at least on the interval [0, o).

Also for the second exponent r, = —v we obtain in the same manner

> (=1)" x\2n—v
) = nZ::J) AT —v+n) (E) '
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The functions J,(x) and J_,(x) are called Bessel functions of the first kind of order
v and —v respectively. Depending on the value of v, the expression for J_,(x) may
contain negative powers of x and hence converge on the interval (0, o).
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General solution

When v = 0 than the expressions for J,(x) and J_,(x) are the same.

If v>0andr —r =v—(-v) =2vis not a positive integer, than it follows from the
Case |, that J,(x) and J_,(x) are linearly independent solutions on (0, c0) and so the
general solution is

y = c1y(x) + c2J ().



From the Case Il, when r{ —rp = 2v is a positive integer, a second solution of Bessel’s
equation may exist. We distinguish two possibilities:

(i) When v = m is a positive integer, J_,(x) and J,(x) are not linearly independent
solutions, and specifically it can be show that J_,,(x) is a constant multiple of J;,,(x).

(i) In addition, r; — r» = 2v can be a positive integer when v is half an odd positive
integer. In this case, it can be shown that J,(x) and J_,(x) are linearly independent,
and the general solution on (0, ) is

y = c1Jy(x) + cpJ_(x), v # integer.



Example 1: General solution: v is not an integer

Consider Bessel’s differential equation

1
2y +xy + (x2 - Z)y =0;

by identifying v? = § and v = 1, we get the general solution on (0, =) as

y =c1J12(x) + a1 2(%).



Bessel functions of the second kind

If v # integer, the function defined by the linear combination
cos(vm)Jy(x) — J—y(x)
sin(vrr)
where the functions J,(x) are linearly independent solutions of Bessel’s equation,
another form of the general solution of this equation is

Yy(x) =

y(x) = c1Jy(x) + e Yy(x) B & e m——
/A

provided v is not an integer. T / 7N A
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cos(vm)Jy(x) — J—_y(x)

sin(vrr)
As v — m, where m is an integer, the expression above has the indeterminate form
0/0. Using LHospital’s rule, it can be shown that

Yy(x) =

v—m
exists; moreover both Y,,(x) and J,,(x) are linearly independent solutions of

x2y// n xy/ n (X2 _ m2)y — 0

Hence for any value of v, the general solution of Bessel's equation on the interval
(0, 0) can be written using the Bessel functions of the second kind of order v
Y,(x) as

y = c1Jy(x) + 2 Yy(x).
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Example 2: General solution: v is an integer

Consider Bessel’s differential equation

2y +xy + (x2 - 9)y =0;

by identifying v2=9andvy=3,we get the general solution on (0, o) as

y = c1J3(x) + 2 Y3(x).



Differential equations solvable in terms of the Bessel functions
We can in some cases transform a differential equation into Bessel's equation by
changing a variable. For example, letr = ax, @ > 0 in

xy "+ xy +(a2x2 )y:O;

and then by the chain rule

dy dy dr dy d2y d dy dt 2d2y
—a—, and —= =a —=.
dx ~ drdx dr dx2  dr\dx/dx dr2
The equation above then becomes
1\2 Hd%y (1 dy %y Ay o
— — +|— 0 or rr—+t—+|(t"— = 0.
(a/) ) +( ) dt ( )y d2 dt ( Y )y

The last equation is Bessel's equation of order v with solution y = c¢1J,(t) + ¢7 Y, (2).



y = c1Jy(t) + 2 Yy (2).

By re-substituting r = ax into the general solution, we find that the general solution
on the interval (0, ) is

y = c1Jy(ax) + cr Yy(ax).

The equation

Y+ xy + (a2x2 - vz)y =0;

is called the parametric Bessel equation of order v and its general solutions are
very important in the study of certain boundary-value problems involving partial dif-
ferential equations that are expressed in cylindrical coordinates.



Another equation similar to Bessel’s equation of order v
x2y" +xy + (x2 - v2)y =0
is the modified Bessel equation of order v
2y + xy - (x2 + vz)y =0;
which can also be solved by substitution. Specifically with ¢ = ix where i = V=1 we

get

d2 dy
2d7Yy 2 2
t_t2+t_t+(t —v)y—O.

Since the solution of the last differential equation are J,(¢) and Y,,(t), complex-valued
solutions of the modified Bessel equation are J,(ix) and Y, (ix).



j: || 1,00 —— // /'IA
I /7
25 | 13(,‘) // | .
Real valued solution, called the modified Bessel function of the first kind of order | i
v, is defined in terms of J,(ix): s ——F
I(x) = iV Jy(ix). R
The modified Bessel function of the second kind of order v # integer is defined —
to be 5ol \\ “.‘ ! K,
! \ : K@) === ]
ml_y(x)— I(x 2s [ AL e
Ky () = T = MY BN b
2 sin vir T "
and for integral v = n

Kn(x) = lim Ky(x).

Since I,,(x) and K,(x) are linearly independent on the interval (0, o) for any value of

1 ;‘ — 3 — 4
v, the general solution of the modified Bessel equation can be written as

y = c1ly(x) + 2 Ky(x).



The general solution of the parametric form of the modified Bessel equation of order
4

xzy" +xy - (afzx2 + V2)y =0
on the interval (0, o) can be written as

y = c1ly(ax) + cr Ky (ax).



Another equation, which is important because many differential equations fit into its
form by appropriate choice of parameters, is

1-2 2_
v+ —ay’ + (bzczxzc_2 P )y =0
X
whose general solution can be found in the form

y=x“ [clJp(bxc) + csz(be)] .

by means of change of both the independent and dependent variables:

c= b,y = (%)/ w().

and if p is not an integer, then Y,(x) above can be replaced by J_,.



Example 3
Find the general solution of xy”” + 3y’ + 9y = 0 on the interval [0, ).

Solution:
We can rewrite the equation into its standard form

3, 9
Y+ +-y=0
X X

and make the identifications
1-2a=3, b*’*=9, 2c-2=-1, and a*-p**=0

which imply @ = -1 and ¢ = 5. From the remaining the equations, we get » = 6 and

p=2.

[ —

The general solution on the interval [0, o) is then

y = X! [c1J2(6x1/2) + 02Y2(6x1/2)] :



Example 4: Free undamped motion of mass m on an aging spring:

mx"’ + ke ¥x=0, a>0.

Solution:

The change of variables s = %\/%e“”/z transforms the differential equation into

d?x  dx
2 2. _
Ry _d52+s_ds+s x=0,
which is Bessel's equation with v = 0. The general solution of this equation is x =

c1Jo(s) + cpYp(s) which after re-substitution of s gives

2 |k 2 |k
x(t) = c1Jy (a \/;e_m/z) + Y (& \/;e_m/z) :



Another example

k
mx"”" +ktx=0 or x"+—tx=0
m

is an Airy equation
v+ a/zxy = 0.

lts general equation can also be written in terms of Bessel functions.



Properties of Bessels functions
of the first and second kind of order m, m = 0,1,2,...:

(i)
J-m(x) = (- 1)mjm(x),

(il) Jm(x) is an even function if m is an even integer, and an odd function if m is an
odd integer:

Im(=x) = (_1)m-]m(x),
(iii)

0, m>0

(iv) Y;u(x) is unbounded at the origin:

lim Y, (x) = —oo.
x—0t



The solutions of the Bessel equation of order 0 can be obtained using the Case Il
solutions

[0e]
yi(x) = Z cn X ¢ # 0,
n=0

y(x) = yi(x)In(x) + Z b2,
n=0

It can be shown that

yix) = Jox)

(=K 1 1\ [x\2k
»x) = Jo(x)lnx—];(k!)z (“T"'T)(E) .




The Bessel function of the second kind of order 0, Yy(x), is then defined to be the
linear combination

2 2

Yo() = —(y=In2)y;(x) + —yp(x), for x>0
2 (-DF 1\ (x\2k
- ;JO(x)lHlnzl__Z (k1)2 ( +§+m+%)(§) ’

where y = 0.57721566. .. is Euler’s constant. Due to the presence of the logarith-
mic term, Yy(x) is discontinuous at x = 0.



Differential recurrence relations

I = vIy(x) = Xy 41 ()

relate Bessel functions of different orders.
Example 5: Derivation using the series definition

Solution:
It follows from

(0]

(_l)n x\2n+v
Jy(x) = Z;) n!T(1 + v + n) (5)




that

e = el
B Vi:: n!r((1_+1 )vn+ ) (%)MV i 22 n!F((l_ 13?1 ) (%)ZW
- e x,:l (n— 1)!(r_(11)i v+ 1) (%)MH
= V() —x N (=¥ ( §)2k+v+1 ) — )

!
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where k = n — 1.



The recurrence relation can be written in an alternative form: dividing the recurrence
relation by x gives

v
Jy(x) — ;JV(X) = —Jy+1(0).

which is a linear first-order differential equation in J,(x). Multiplying both sides by by

the integrating factor x™" yields

d

= [T hW@] = 2w,

It can similarly be shown that

d
=R = 271 ()
X

The differential recurrence relations above are also valid for the Bessel function of
the second kind Y,(x). When v = 0, the first differential recurrence relation gives

Jo(x) = =Ji(x) and  Yj(x) = -Y1(x).



Sperical Bessel functions

When the order v is half an odd integer, i%, i%, i%, ..., the Bessel functions of the
first kind J,(x) can be expressed in terms of the elementary functions sin x, cos x and
powers of x and are called spherical Bessel functions.

Consider the case v = %:
> (=1)" x\2n+1/2
J1/2(x) = Z : (—)
n=0n!F(1 +5 +n) 2

Using that F(%) = +/mr and the property I'(1 + @) = aI'(a), we can obtain the values
ofF(l +%+n>forn20,n: 1, n =3 efc.



ThevaluesofF(l+%+n)forn:0,n:l,n:3:

3 N 11\ 1
r(2) = r{1+=|==r(2)==vx
2 2] 72 \2) 72
5 3\ 3 (3) 3
I'|= = I'l1+=l==IT=]|=—
2 2] =2 \2) T 2V
7 5 5\ 53 5432.1 51
rl2] = Tli+2]=2r(2) =22 vr= 2522 = 2
2 2 S| = V=5, VT 252!\/_’
9 7 7\ 75! 7.6.5! 71
rl2) = tli+2)=2r(l)= 22 = -
2 2 2) " 2601 V' T 26601 VT 2731
In general

I\ @u+1)
F(1+§+n)—22T1n'\/E



Consequently

(0o

(-1 x\2n+1/2
n:O(ZZZH,z;\/% 2

_ \/72 (-1)" 2+l
Qn+ D

The infinite series above is the Maclaurin series for sin x and thus

[2 .
J172(x) = p— sin x.

Similarly it can be shown that

[ 2
J_12(x) = p— COS X.




