Special functions

- Bessel's equations

Special Functions

The differential equation

$$x^2y'' + xy' + (x^2 - \nu^2)y = 0$$

is called Bessel's equation of order ν . It occurs frequently in advanced studies in applied mathematics, physics and engineering.

Its solutions are called Bessel functions.

In following we will assume that $v \ge 0$ and we will seek series solutions of Bessel's equation about x = 0 which is its regular singular point.

The solution:

Since x = 0 is a regular singular point of Bessel's equation, there is at least one solution of the form $y(x) = \sum_{n=0}^{\infty} c_n x^{n+r}$.

Substituting this into the equation gives

$$\begin{aligned} x^{2}y'' &+ xy' + (x^{2} - v^{2})y = \\ &= \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r} + \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r} + \sum_{n=0}^{\infty} c_{n}x^{n+r+2} - v^{2}\sum_{n=0}^{\infty} c_{n}x^{n+r} \\ &= c_{0}(r^{2} - r + r - v^{2})x^{r} + x^{r}\sum_{n=1}^{\infty} c_{n}[(n+r)(n+r-1) + (n+r) - v^{2}]x^{n} + x^{r}\sum_{n=0}^{\infty} c_{n}x^{n+2} \\ &= c_{0}(r^{2} - v^{2})x^{r} + x^{r}\sum_{n=1}^{\infty} c_{n}[(n+r)^{2} - v^{2}]x^{n} + x^{r}\sum_{n=0}^{\infty} c_{n}x^{n+2}. \end{aligned}$$

We see that the indicial equation is $r^2 - v^2 = 0$, so the roots are $r_1 = v$ and $r_2 = -v$.

When $r_1 = v$, the equation above becomes

$$\begin{aligned} x^{\nu} & \sum_{n=1}^{\infty} c_n n(n+2) x^n + x^{\nu} \sum_{n=0}^{\infty} c_n x^{n+2} \\ &= x^{\nu} \left[(1+2\nu) c_1 x + \sum_{n=2}^{\infty} c_n n(n+2\nu) x^n + \sum_{n=0}^{\infty} c_n x^{n+2} \right] \\ &= x^{\nu} \left[(1+2\nu) c_1 x + \sum_{k=0}^{\infty} [(k+2)(k+2+2\nu) c_{k+2} + c_k] x^{k+2} \right] = 0. \end{aligned}$$

Therefore $(1 + 2\nu)c_1 = 0$ and $(k + 2)(k + 2 + 2\nu)c_{k+2} + c_k = 0$.

The relation $(k + 2)(k + 2 + 2\nu)c_{k+2} + c_k = 0$ imply the recurrence

$$c_{k+2} = \frac{-c_k}{(k+2)(k+2+2\nu)}, \quad k = 0, 1, 2...$$

From $(1 + 2\nu)c_1 = 0$, the choice $c_1 = 0$ implies $c_3 = c_5 \cdots = 0$.

For k = 0, 2, 4... we find letting k + 2 = 2n, n = 1, 2, 3, ..., that

$$c_{2n} = -\frac{c_{2n-2}}{2^2 n(n+\nu)}.$$

Thus explicitly

$$c_{2} = -\frac{c_{0}}{2^{2}.1.(1+\nu)}$$

$$c_{4} = -\frac{c_{2}}{2^{2}.2(2+\nu)} = -\frac{c_{0}}{2^{4}.1.2(1+\nu)(2+\nu)}$$

$$c_{6} = -\frac{c_{2}}{2^{2}.3(3+\nu)} = -\frac{c_{0}}{2^{6}.1.2.3(1+\nu)(2+\nu)(3+\nu)}$$

$$\vdots$$

$$c_{2n} = -\frac{(-1)^{n}c_{0}}{2^{2n}n!(1+\nu)(2+\nu)\dots(n+\nu)}, \quad n = 1, 2, 3 \dots$$

It is standard to choose c_0 to be a specific value, namely

$$c_0 = \frac{1}{2^{\nu} \Gamma(1+\nu)},$$

where $\Gamma(1 + \nu)$ is the gamma function.

Gamma function

Euler's integral definition:

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

Though this integral does not converge for x < 0, it can be shown by other definitions that the gamma function is defined for all real and complex values except

$$x = -n, \quad n = 0, 1, 2, \dots$$

The gamma function has a convenient property

$$\Gamma(1+\alpha) = \alpha \Gamma(\alpha)$$

When n is a positive integer

$$\Gamma(n+1) = n$$

so the gamma function is often called generalized factorial function.

The recurrence property gamma function $\Gamma(1 + \alpha) = \alpha \Gamma(\alpha)$ allows us to reduce the product in the denominator of c_{2n} to one term. For example

$$\Gamma(1 + \nu + 1) = (1 + \nu)\Gamma(1 + \nu) \Gamma(1 + \nu + 2) = (2 + \nu)\Gamma(2 + \nu) = (2 + \nu)(1 + \nu)\Gamma(1 + \nu).$$

so we can write

$$c_{2n} = \frac{(-1)^n}{2^{2n+\nu}n!(1+\nu)(2+\nu)\dots(n+\nu)\Gamma(1+\nu)} = \frac{(-1)^n}{2^{2n+\nu}n!\Gamma(1+\nu+n)}$$

for n = 0, 1, 2....

Bessel functions of the first kind

The series solution $y = \sum_{n=0}^{\infty} c_{2n} x^{2n+\nu}$ is usually denoted

$$J_{\nu}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\Gamma(1+\nu+n)} \left(\frac{x}{2}\right)^{2n+\nu}.$$

If $\nu \ge 0$, the series converges at least on the interval $[0, \infty)$.

Also for the second exponent $r_2 = -v$ we obtain in the same manner

$$J_{-\nu}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\Gamma(1-\nu+n)} \left(\frac{x}{2}\right)^{2n-\nu}$$

The functions $J_{\nu}(x)$ and $J_{-\nu}(x)$ are called **Bessel functions of the first kind** of order ν and $-\nu$ respectively. Depending on the value of ν , the expression for $J_{-\nu}(x)$ may contain negative powers of x and hence converge on the interval $(0, \infty)$.

General solution

When v = 0 than the expressions for $J_{\nu}(x)$ and $J_{-\nu}(x)$ are the same.

If v > 0 and $r_1 - r_2 = v - (-v) = 2v$ is not a positive integer, than it follows from the Case I, that $J_v(x)$ and $J_{-v}(x)$ are linearly independent solutions on $(0, \infty)$ and so the general solution is

$$y = c_1 J_{\nu}(x) + c_2 J_{-\nu}(x).$$

From the Case II, when $r_1 - r_2 = 2v$ is a positive integer, a second solution of Bessel's equation may exist. We distinguish two possibilities:

(i) When v = m is a positive integer, $J_{-\nu}(x)$ and $J_{\nu}(x)$ are not linearly independent solutions, and specifically it can be show that $J_{-m}(x)$ is a constant multiple of $J_m(x)$.

(ii) In addition, $r_1 - r_2 = 2\nu$ can be a positive integer when ν is half an odd positive integer. In this case, it can be shown that $J_{\nu}(x)$ and $J_{-\nu}(x)$ are linearly independent, and the general solution on $(0, \infty)$ is

$$y = c_1 J_{\nu}(x) + c_2 J_{-\nu}(x), \quad \nu \neq \text{ integer.}$$

Example 1: General solution: v is not an integer

Consider Bessel's differential equation

$$x^{2}y'' + xy' + \left(x^{2} - \frac{1}{4}\right)y = 0;$$

by identifying $v^2 = \frac{1}{4}$ and $v = \frac{1}{2}$, we get the general solution on $(0, \infty)$ as $y = c_1 J_{1/2}(x) + c_2 J_{-1/2}(x).$

Bessel functions of the second kind

If $v \neq$ integer, the function defined by the linear combination

$$Y_{\nu}(x) = \frac{\cos(\nu\pi)J_{\nu}(x) - J_{-\nu}(x)}{\sin(\nu\pi)}$$

where the functions $J_{\nu}(x)$ are linearly independent solutions of Bessel's equation,

another form of the general solution of this equation is

$$y(x) = c_1 J_{\nu}(x) + c_2 Y_{\nu}(x)$$

provided ν is not an integer.

$$Y_{\nu}(x) = \frac{\cos(\nu\pi)J_{\nu}(x) - J_{-\nu}(x)}{\sin(\nu\pi)}$$

As $v \rightarrow m$, where *m* is an integer, the expression above has the indeterminate form 0/0. Using L'Hospital's rule, it can be shown that

$$Y_m(x) = \lim_{\nu \to m} Y_{\nu}(x)$$

exists; moreover both $Y_m(x)$ and $J_m(x)$ are linearly independent solutions of

$$x^2y'' + xy' + (x^2 - m^2)y = 0'$$

Hence for any value of ν , the general solution of Bessel's equation on the interval $(0, \infty)$ can be written using the **Bessel functions of the second kind** of order ν $Y_{\nu}(x)$ as

$$y = c_1 J_{\nu}(x) + c_2 Y_{\nu}(x).$$

х	$J_0(x)$	$J_1(x)$	$Y_0(x)$	$Y_1(x)$
0	1.0000	0.0000		-
1	0.7652	0.4401	0.0883	-0.7812
2	0.2239	0.5767	0.5104	-0.1070
3	-0.2601	0.3391	0.3769	0.3247
4	-0.3971	-0.0660	-0.0169	0.3979
5	-0.1776	-0.3276	-0.3085	0.1479
6	0.1506	-0.2767	-0.2882	-0.1750
7	0.3001	-0.0047	-0.0259	-0.3027
8	0.1717	0.2346	0.2235	-0.1581
9	-0.0903	0.2453	0.2499	0.1043
10	-0.2459	0.0435	0.0557	0.2490
11	-0.1712	-0.1768	-0.1688	0.1637
12	0.0477	-0.2234	-0.2252	-0.0571
13	0.2069	-0.0703	-0.0782	-0.2101
14	0.1711	0.1334	0.1272	-0.1666
15	-0.0142	0.2051	0.2055	0.0211

Example 2: General solution: *v* is an integer

Consider Bessel's differential equation

$$x^{2}y'' + xy' + (x^{2} - 9)y = 0;$$

by identifying $v^2 = 9$ and v = 3, we get the general solution on $(0, \infty)$ as

$$y = c_1 J_3(x) + c_2 Y_3(x).$$

Differential equations solvable in terms of the Bessel functions

We can in some cases transform a differential equation into Bessel's equation by changing a variable. For example, let $t = \alpha x$, $\alpha > 0$ in

$$x^{2}y'' + xy' + (\alpha^{2}x^{2} - \nu^{2})y = 0;$$

and then by the chain rule

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}\frac{\mathrm{d}t}{\mathrm{d}x} = \alpha \frac{\mathrm{d}y}{\mathrm{d}t}, \quad \text{and} \quad \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)\frac{\mathrm{d}t}{\mathrm{d}x} = \alpha^2 \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}.$$

The equation above then becomes

$$\left(\frac{t}{\alpha}\right)^2 \alpha^2 \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + \left(\frac{t}{\alpha}\right) \alpha \frac{\mathrm{d}y}{\mathrm{d}t} + \left(t^2 - v^2\right) y = 0 \quad \text{or} \quad t^2 \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + t \frac{\mathrm{d}y}{\mathrm{d}t} + \left(t^2 - v^2\right) y = 0.$$

The last equation is Bessel's equation of order v with solution $y = c_1 J_v(t) + c_2 Y_v(t)$.

$$y = c_1 J_{\nu}(t) + c_2 Y_{\nu}(t).$$

By re-substituting $t = \alpha x$ into the general solution, we find that the general solution on the interval $(0, \infty)$ is

$$y = c_1 J_{\nu}(\alpha x) + c_2 Y_{\nu}(\alpha x)$$

The equation

$$x^{2}y'' + xy' + (\alpha^{2}x^{2} - \nu^{2})y = 0;$$

is called the **parametric Bessel equation of order** ν and its general solutions are very important in the study of certain boundary-value problems involving partial differential equations that are expressed in cylindrical coordinates.

Another equation similar to Bessel's equation of order v

$$x^2y'' + xy' + (x^2 - v^2)y = 0$$

is the modified Bessel equation of order $\boldsymbol{\nu}$

$$x^{2}y'' + xy' - (x^{2} + v^{2})y = 0;$$

which can also be solved by substitution. Specifically with t = ix where $i = \sqrt{-1}$ we get

$$t^{2}\frac{d^{2}y}{dt^{2}} + t\frac{dy}{dt} + (t^{2} - v^{2})y = 0.$$

Since the solution of the last differential equation are $J_{\nu}(t)$ and $Y_{\nu}(t)$, *complex-valued* solutions of the modified Bessel equation are $J_{\nu}(ix)$ and $Y_{\nu}(ix)$.

Real valued solution, called the modified Bessel function of the first kind of order v, is defined in terms of $J_v(ix)$:

$$I_{\mathcal{V}}(x) = i^{-\mathcal{V}} J_{\mathcal{V}}(ix).$$

The modified Bessel function of the second kind of order $\nu \neq$ integer is defined to be

$$K_{\nu}(x) = \frac{\pi}{2} \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu \pi}$$

and for integral v = n

$$K_n(x) = \lim_{\nu \to n} K_{\nu}(x).$$

Since $I_{\nu}(x)$ and $K_{\nu}(x)$ are linearly independent on the interval $(0, \infty)$ for any value of ν , the general solution of the modified Bessel equation can be written as

$$y = c_1 I_{\nu}(x) + c_2 K_{\nu}(x).$$

The general solution of the **parametric form** of the modified Bessel equation of order $\boldsymbol{\nu}$

$$x^2y'' + xy' - (\alpha^2 x^2 + \nu^2)y = 0$$

on the interval $(0, \infty)$ can be written as

 $y = c_1 I_{\nu}(\alpha x) + c_2 K_{\nu}(\alpha x).$

Another equation, which is important because many differential equations fit into its form by appropriate choice of parameters, is

$$y'' + \frac{1 - 2a}{x}y' + \left(b^2c^2x^{2c-2} + \frac{a^2 - p^2c^2}{x^2}\right)y = 0$$

whose general solution can be found in the form

$$y = x^a \left[c_1 J_p(bx^c) + c_2 Y_p(bx^c) \right].$$

by means of change of both the independent and dependent variables:

$$z = bx^c$$
, $y(x) = \left(\frac{z}{b}\right)^{a/c} w(z)$.

and if p is not an integer, then $Y_p(x)$ above can be replaced by J_{-p} .

Example 3

Find the general solution of xy'' + 3y' + 9y = 0 on the interval $[0, \infty)$.

Solution:

We can rewrite the equation into its standard form

$$y'' + \frac{3}{x}y' + \frac{9}{x}y = 0$$

and make the identifications

$$1 - 2a = 3$$
, $b^2c^2 = 9$, $2c - 2 = -1$, and $a^2 - p^2c^2 = 0$

which imply a = -1 and $c = \frac{1}{2}$. From the remaining the equations, we get b = 6 and p = 2.

The general solution on the interval $[0, \infty)$ is then

$$y = x^{-1} \left[c_1 J_2(6x^{1/2}) + c_2 Y_2(6x^{1/2}) \right].$$

Example 4: Free undamped motion of mass *m* on an aging spring:

$$mx'' + ke^{-\alpha t}x = 0, \quad \alpha > 0.$$

Solution:

The change of variables $s = \frac{2}{\alpha} \sqrt{\frac{k}{m}} e^{-\alpha t/2}$ transforms the differential equation into

$$s^2 \frac{\mathrm{d}^2 x}{\mathrm{d}s^2} + s \frac{\mathrm{d}x}{\mathrm{d}s} + s^2 x = 0,$$

which is Bessel's equation with v = 0. The general solution of this equation is $x = c_1 J_0(s) + c_2 Y_0(s)$ which after re-substitution of *s* gives

$$x(t) = c_1 J_0 \left(\frac{2}{\alpha} \sqrt{\frac{k}{m}} e^{-\alpha t/2} \right) + c_2 Y_0 \left(\frac{2}{\alpha} \sqrt{\frac{k}{m}} e^{-\alpha t/2} \right).$$

Another example

$$mx'' + ktx = 0 \quad \text{or} \quad x'' + \frac{k}{m}tx = 0$$

is an Airy equation

$$y^{\prime\prime} + \alpha^2 x y = 0.$$

Its general equation can also be written in terms of Bessel functions.

Properties of Bessels functions

of the first and second kind of order m, m = 0, 1, 2, ...: (i)

$$J_{-m}(x) = (-1)^m J_m(x),$$

(ii) $J_m(x)$ is an even function if *m* is an even integer, and an odd function if *m* is an odd integer:

$$J_m(-x) = (-1)^m J_m(x),$$

(iii)

$$J_m(0) = \begin{cases} 0, & m > 0 \\ 1, & m = 0 \end{cases},$$

(iv) $Y_m(x)$ is unbounded at the origin:

$$\lim_{x\to 0^+} Y_m(x) = -\infty.$$

The solutions of the Bessel equation of order $0\ {\rm can}\ {\rm be}\ {\rm obtained}\ {\rm using}\ {\rm the}\ {\rm Case}\ {\rm III}\ {\rm solutions}$

$$y_1(x) = \sum_{n=0}^{\infty} c_n x^{n+r_1}, c_0 \neq 0,$$

$$y_2(x) = y_1(x) \ln(x) + \sum_{n=0}^{\infty} b_n x^{n+r_2}.$$

It can be shown that

$$y_1(x) = J_0(x)$$

$$y_2(x) = J_0(x) \ln x - \sum_{k=1}^{\infty} \frac{(-1)^k}{(k!)^2} \left(1 + \frac{1}{2} + \dots + \frac{1}{k}\right) \left(\frac{x}{2}\right)^{2k}.$$

The Bessel function of the second kind of order 0, $Y_0(x)$, is then defined to be the linear combination

$$Y_0(x) = \frac{2}{\pi} (\gamma - \ln 2) y_1(x) + \frac{2}{\pi} y_2(x), \quad \text{for } x > 0$$

= $\frac{2}{\pi} J_0(x) \left[\gamma + \ln \frac{x}{2} \right] - \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^k}{(k!)^2} \left(1 + \frac{1}{2} + \dots + \frac{1}{k} \right) \left(\frac{x}{2} \right)^{2k},$

where $\gamma = 0.57721566...$ is **Euler's constant**. Due to the presence of the logarithmic term, $Y_0(x)$ is discontinuous at x = 0.

Differential recurrence relations

$$xJ'_{\nu}(x) = \nu J_{\nu}(x) - xJ_{\nu+1}(x)$$

relate Bessel functions of different orders.

Example 5: Derivation using the series definition

Solution: It follows from

$$J_{\nu}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\Gamma(1+\nu+n)} \left(\frac{x}{2}\right)^{2n+\nu}$$

that

$$\begin{aligned} xJ_{\nu}'(x) &= \sum_{n=0}^{\infty} \frac{(-1)^{n}(2n+\nu)}{n!\Gamma(1+\nu+n)} \left(\frac{x}{2}\right)^{2n+\nu} \\ &= \nu \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+\nu+n)} \left(\frac{x}{2}\right)^{2n+\nu} + 2\sum_{n=0}^{\infty} \frac{(-1)^{n}n}{n!\Gamma(1+\nu+n)} \left(\frac{x}{2}\right)^{2n+\nu} \\ &= \nu J_{\nu}(x) + x \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n-1)!\Gamma(1+\nu+n)} \left(\frac{x}{2}\right)^{2n+\nu-1} \\ &= \nu J_{\nu}(x) - x \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(2+\nu+k)} \left(\frac{x}{2}\right)^{2k+\nu+1} = \nu J_{\nu}(x) - x J_{\nu+1}(x), \end{aligned}$$

where k = n - 1.

The recurrence relation can be written in an alternative form: dividing the recurrence relation by x gives

$$J_{\nu}'(x) - \frac{\nu}{x} J_{\nu}(x) = -J_{\nu+1}(x).$$

which is a linear first-order differential equation in $J_{\nu}(x)$. Multiplying both sides by by the integrating factor $x^{-\nu}$ yields

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[x^{-\nu}J_{\nu}(x)\right] = -x^{-\nu}J_{\nu+1}(x).$$

It can similarly be shown that

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[x^{\nu}J_{\nu}(x)\right] = x^{\nu}J_{\nu-1}(x).$$

The differential recurrence relations above are also valid for the Bessel function of the second kind $Y_{\nu}(x)$. When $\nu = 0$, the first differential recurrence relation gives

$$J'_0(x) = -J_1(x)$$
 and $Y'_0(x) = -Y_1(x)$.

Sperical Bessel functions

When the order v is half an odd integer, $\pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \ldots$, the Bessel functions of the first kind $J_v(x)$ can be expressed in terms of the elementary functions $\sin x$, $\cos x$ and powers of x and are called **spherical Bessel functions**.

Consider the case $v = \frac{1}{2}$:

$$J_{1/2}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\Gamma\left(1 + \frac{1}{2} + n\right)} \left(\frac{x}{2}\right)^{2n+1/2}$$

Using that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ and the property $\Gamma(1 + \alpha) = \alpha \Gamma(\alpha)$, we can obtain the values of $\Gamma\left(1 + \frac{1}{2} + n\right)$ for n = 0, n = 1, n = 3 etc.

The values of $\Gamma(1 + \frac{1}{2} + n)$ for n = 0, n = 1, n = 3:

$$\Gamma\left(\frac{3}{2}\right) = \Gamma\left(1+\frac{1}{2}\right) = \frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \frac{1}{2}\sqrt{\pi},$$

$$\Gamma\left(\frac{5}{2}\right) = \Gamma\left(1+\frac{3}{2}\right) = \frac{3}{2}\Gamma\left(\frac{3}{2}\right) = \frac{3}{2^2}\sqrt{\pi},$$

$$\Gamma\left(\frac{7}{2}\right) = \Gamma\left(1+\frac{5}{2}\right) = \frac{5}{2}\Gamma\left(\frac{5}{2}\right) = \frac{5.3}{2^3}\sqrt{\pi} = \frac{5.4.3.2.1}{2^3.4.2}\sqrt{\pi} = \frac{5!}{2^52!}\sqrt{\pi},$$

$$\Gamma\left(\frac{9}{2}\right) = \Gamma\left(1+\frac{7}{2}\right) = \frac{7}{2}\Gamma\left(\frac{7}{2}\right) = \frac{7.5!}{2^62!}\sqrt{\pi} = \frac{7.6.5!}{2^6.6.2!}\sqrt{\pi} = \frac{7!}{2^73!}\sqrt{\pi}.$$

In general

$$\Gamma\left(1+\frac{1}{2}+n\right) = \frac{(2n+1)!}{2^{2n+1}n!}\sqrt{\pi}.$$

Consequently

$$J_{1/2}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{\frac{(2n+1)!}{2^{2n+1}n!}} \sqrt{\pi} \left(\frac{x}{2}\right)^{2n+1/2}.$$
$$= \sqrt{\frac{2}{\pi x}} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}.$$

The infinite series above is the Maclaurin series for $\sin x$ and thus

$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x.$$

Similarly it can be shown that

$$J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x.$$