Special functions

- Bessel's equations


## Special Functions

The differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0
$$

is called Bessel's equation of order $v$. It occurs frequently in advanced studies in applied mathematics, physics and engineering.

Its solutions are called Bessel functions.

In following we will assume that $v \geq 0$ and we will seek series solutions of Bessel's equation about $x=0$ which is its regular singular point.

## The solution:

Since $x=0$ is a regular singular point of Bessel's equation, there is at least one solution of the form $y(x)=\sum_{n=0}^{\infty} c_{n} x^{n+r}$.

Substituting this into the equation gives

$$
\begin{aligned}
x^{2} y^{\prime \prime} & +x y^{\prime}+\left(x^{2}-v^{2}\right) y= \\
& =\sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1) x^{n+r}+\sum_{n=0}^{\infty} c_{n}(n+r) x^{n+r}+\sum_{n=0}^{\infty} c_{n} x^{n+r+2}-v^{2} \sum_{n=0}^{\infty} c_{n} x^{n+r} \\
& =c_{0}\left(r^{2}-r+r-v^{2}\right) x^{r}+x^{r} \sum_{n=1}^{\infty} c_{n}\left[(n+r)(n+r-1)+(n+r)-v^{2}\right] x^{n}+x^{r} \sum_{n=0}^{\infty} c_{n} x^{n+2} \\
& =c_{0}\left(r^{2}-v^{2}\right) x^{r}+x^{r} \sum_{n=1}^{\infty} c_{n}\left[(n+r)^{2}-v^{2}\right] x^{n}+x^{r} \sum_{n=0}^{\infty} c_{n} x^{n+2} .
\end{aligned}
$$

We see that the indicial equation is $r^{2}-v^{2}=0$, so the roots are $r_{1}=v$ and $r_{2}=-v$.

When $r_{1}=v$, the equation above becomes

$$
\begin{aligned}
& x^{v} \sum_{n=1}^{\infty} c_{n} n(n+2) x^{n}+x^{v} \sum_{n=0}^{\infty} c_{n} x^{n+2} \\
& =x^{v}\left[(1+2 v) c_{1} x+\sum_{n=2}^{\infty} c_{n} n(n+2 v) x^{n}+\sum_{n=0}^{\infty} c_{n} x^{n+2}\right] \\
& =x^{v}\left[(1+2 v) c_{1} x+\sum_{k=0}^{\infty}\left[(k+2)(k+2+2 v) c_{k+2}+c_{k}\right] x^{k+2}\right]=0 .
\end{aligned}
$$

Therefore $(1+2 v) c_{1}=0$ and $(k+2)(k+2+2 v) c_{k+2}+c_{k}=0$.

The relation $(k+2)(k+2+2 v) c_{k+2}+c_{k}=0$ imply the recurrence

$$
c_{k+2}=\frac{-c_{k}}{(k+2)(k+2+2 v)}, \quad k=0,1,2 \ldots
$$

From $(1+2 v) c_{1}=0$, the choice $c_{1}=0$ implies $c_{3}=c_{5} \cdots=0$.

For $k=0,2,4 \ldots$ we find letting $k+2=2 n, n=1,2,3, \ldots$, that

$$
c_{2 n}=-\frac{c_{2 n-2}}{2^{2} n(n+v)} .
$$

Thus explicitly

$$
\begin{aligned}
c_{2} & =-\frac{c_{0}}{2^{2} \cdot 1 \cdot(1+v)} \\
c_{4} & =-\frac{c_{2}}{2^{2} \cdot 2(2+v)}=-\frac{c_{0}}{2^{4} \cdot 1.2(1+v)(2+v)} \\
c_{6} & =-\frac{c_{2}}{2^{2} \cdot 3(3+v)}=-\frac{c_{0}}{2^{6} \cdot 1.2 \cdot 3(1+v)(2+v)(3+v)} \\
\vdots & \\
c_{2 n} & =-\frac{(-1)^{n} c_{0}}{2^{2 n} n!(1+v)(2+v) \ldots(n+v)}, \quad n=1,2,3 \ldots .
\end{aligned}
$$

It is standard to choose $c_{0}$ to be a specific value, namely

$$
c_{0}=\frac{1}{2^{v} \Gamma(1+v)},
$$

where $\Gamma(1+v)$ is the gamma function.

## Gamma function

Euler's integral definition:

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

Though this integral does not converge for $x<0$, it can be shown by other definitions that the gamma function is defined for all real and complex values except

$$
x=-n, \quad n=0,1,2, \ldots .
$$

The gamma function has a convenient property

$$
\Gamma(1+\alpha)=\alpha \Gamma(\alpha) .
$$

When $n$ is a positive integer

$$
\Gamma(n+1)=n!
$$

so the gamma function is often called generalized factorial function.


The recurrence property gamma function $\Gamma(1+\alpha)=\alpha \Gamma(\alpha)$ allows us to reduce the product in the denominator of $c_{2 n}$ to one term. For example

$$
\begin{aligned}
& \Gamma(1+v+1)=(1+v) \Gamma(1+v) \\
& \Gamma(1+v+2)=(2+v) \Gamma(2+v)=(2+v)(1+v) \Gamma(1+v) .
\end{aligned}
$$

so we can write

$$
c_{2 n}=\frac{(-1)^{n}}{2^{2 n+v} n!(1+v)(2+v) \ldots(n+v) \Gamma(1+v)}=\frac{(-1)^{n}}{2^{2 n+v} n!\Gamma(1+v+n)}
$$

for $n=0,1,2 \ldots$.

## Bessel functions of the first kind

The series solution $y=\sum_{n=0}^{\infty} c_{2 n} x^{2 n+v}$ is usually denoted

$$
J_{v}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+v+n)}\left(\frac{x}{2}\right)^{2 n+v} .
$$

If $v \geq 0$, the series converges at least on the interval $[0, \infty)$.


Also for the second exponent $r_{2}=-v$ we obtain in the same manner

$$
J_{-v}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1-v+n)}\left(\frac{x}{2}\right)^{2 n-v} .
$$

The functions $J_{v}(x)$ and $J_{-v}(x)$ are called Bessel functions of the first kind of order $v$ and $-v$ respectively. Depending on the value of $v$, the expression for $J_{-v}(x)$ may contain negative powers of $x$ and hence converge on the interval $(0, \infty)$.

## General solution

When $v=0$ than the expressions for $J_{\nu}(x)$ and $J_{-v}(x)$ are the same.

If $v>0$ and $r_{1}-r_{2}=v-(-v)=2 v$ is not a positive integer, than it follows from the Case I, that $J_{v}(x)$ and $J_{-v}(x)$ are linearly independent solutions on $(0, \infty)$ and so the general solution is

$$
y=c_{1} J_{v}(x)+c_{2} J_{-v}(x) .
$$

From the Case II, when $r_{1}-r_{2}=2 v$ is a positive integer, a second solution of Bessel's equation may exist. We distinguish two possibilities:
(i) When $v=m$ is a positive integer, $J_{-v}(x)$ and $J_{v}(x)$ are not linearly independent solutions, and specifically it can be show that $J_{-m}(x)$ is a constant multiple of $J_{m}(x)$.
(ii) In addition, $r_{1}-r_{2}=2 v$ can be a positive integer when $v$ is half an odd positive integer. In this case, it can be shown that $J_{v}(x)$ and $J_{-v}(x)$ are linearly independent, and the general solution on $(0, \infty)$ is

$$
y=c_{1} J_{v}(x)+c_{2} J_{-v}(x), \quad v \neq \text { integer. }
$$

## Example 1: General solution: $v$ is not an integer

Consider Bessel's differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
$$

by identifying $v^{2}=\frac{1}{4}$ and $v=\frac{1}{2}$, we get the general solution on $(0, \infty)$ as

$$
y=c_{1} J_{1 / 2}(x)+c_{2} J_{-1 / 2}(x) .
$$

## Bessel functions of the second kind

If $v \neq$ integer, the function defined by the linear combination

$$
Y_{\nu}(x)=\frac{\cos (v \pi) J_{\nu}(x)-J_{-v}(x)}{\sin (v \pi)}
$$

where the functions $J_{\nu}(x)$ are linearly independent solutions of Bessel's equation, another form of the general solution of this equation is

$$
y(x)=c_{1} J_{\nu}(x)+c_{2} Y_{\nu}(x)
$$

provided $v$ is not an integer.


$$
Y_{\nu}(x)=\frac{\cos (v \pi) J_{v}(x)-J_{-v}(x)}{\sin (v \pi)}
$$

As $v \rightarrow m$, where $m$ is an integer, the expression above has the indeterminate form $0 / 0$. Using L'Hospital's rule, it can be shown that

$$
Y_{m}(x)=\lim _{\nu \rightarrow m} Y_{\nu}(x)
$$

exists; moreover both $Y_{m}(x)$ and $J_{m}(x)$ are linearly independent solutions of

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-m^{2}\right) y=0^{\prime}
$$

Hence for any value of $v$, the general solution of Bessel's equation on the interval $(0, \infty)$ can be written using the Bessel functions of the second kind of order $v$ $Y_{\nu}(x)$ as

$$
y=c_{1} J_{\nu}(x)+c_{2} Y_{\nu}(x)
$$

| $x$ | $J_{0}(x)$ | $J_{1}(x)$ | $Y_{0}(x)$ | $Y_{1}(x)$ |
| ---: | ---: | ---: | ---: | ---: |
| 0 | 1.0000 | 0.0000 | - | - |
| 1 | 0.7652 | 0.4401 | 0.0883 | -0.7812 |
| 2 | 0.2239 | 0.5767 | 0.5104 | -0.1070 |
| 3 | -0.2601 | 0.3391 | 0.3769 | 0.3247 |
| 4 | -0.3971 | -0.0660 | -0.0169 | 0.3979 |
| 5 | -0.1776 | -0.3276 | -0.3085 | 0.1479 |
| 6 | 0.1506 | -0.2767 | -0.2882 | -0.1750 |
| 7 | 0.3001 | -0.0047 | -0.0259 | -0.3027 |
| 8 | 0.1717 | 0.2346 | 0.2235 | -0.1581 |
| 9 | -0.0903 | 0.2453 | 0.2499 | 0.1043 |
| 10 | -0.2459 | 0.0435 | 0.0557 | 0.2490 |
| 11 | -0.1712 | -0.1768 | -0.1688 | 0.1637 |
| 12 | 0.0477 | -0.2234 | -0.2252 | -0.0571 |
| 13 | 0.2069 | -0.0703 | -0.0782 | -0.2101 |
| 14 | 0.1711 | 0.1334 | 0.1272 | -0.1666 |
| 15 | -0.0142 | 0.2051 | 0.2055 | 0.0211 |



Example 2: General solution: $v$ is an integer

Consider Bessel's differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-9\right) y=0
$$

by identifying $v^{2}=9$ and $v=3$, we get the general solution on $(0, \infty)$ as

$$
y=c_{1} J_{3}(x)+c_{2} Y_{3}(x) .
$$

## Differential equations solvable in terms of the Bessel functions

We can in some cases transform a differential equation into Bessel's equation by changing a variable. For example, let $t=\alpha x, \alpha>0$ in

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(\alpha^{2} x^{2}-v^{2}\right) y=0 ;
$$

and then by the chain rule

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} x}=\alpha \frac{\mathrm{d} y}{\mathrm{~d} t}, \quad \text { and } \quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \frac{\mathrm{d} t}{\mathrm{~d} x}=\alpha^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}} .
$$

The equation above then becomes

$$
\left(\frac{t}{\alpha}\right)^{2} \alpha^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+\left(\frac{t}{\alpha}\right) \alpha \frac{\mathrm{d} y}{\mathrm{~d} t}+\left(t^{2}-v^{2}\right) y=0 \quad \text { or } \quad t^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+t \frac{\mathrm{~d} y}{\mathrm{~d} t}+\left(t^{2}-v^{2}\right) y=0 .
$$

The last equation is Bessel's equation of order $v$ with solution $y=c_{1} J_{v}(t)+c_{2} Y_{\nu}(t)$.

$$
y=c_{1} J_{v}(t)+c_{2} Y_{v}(t)
$$

By re-substituting $t=\alpha x$ into the general solution, we find that the general solution on the interval $(0, \infty)$ is

$$
y=c_{1} J_{v}(\alpha x)+c_{2} Y_{\nu}(\alpha x)
$$

The equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(\alpha^{2} x^{2}-v^{2}\right) y=0
$$

is called the parametric Bessel equation of order $v$ and its general solutions are very important in the study of certain boundary-value problems involving partial differential equations that are expressed in cylindrical coordinates.

Another equation similar to Bessel's equation of order $v$

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0
$$

is the modified Bessel equation of order $v$

$$
x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+v^{2}\right) y=0
$$

which can also be solved by substitution. Specifically with $t=i x$ where $i=\sqrt{-1}$ we get

$$
t^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+t \frac{\mathrm{~d} y}{\mathrm{~d} t}+\left(t^{2}-v^{2}\right) y=0
$$

Since the solution of the last differential equation are $J_{\nu}(t)$ and $Y_{\nu}(t)$, complex-valued solutions of the modified Bessel equation are $J_{\nu}(i x)$ and $Y_{\nu}(i x)$.

Real valued solution, called the modified Bessel function of the first kind of order $v$, is defined in terms of $J_{v}(i x)$ :

$$
I_{\nu}(x)=i^{-v} J_{\nu}(i x) .
$$



The modified Bessel function of the second kind of order $v \neq$ integer is defined to be

$$
K_{\nu}(x)=\frac{\pi}{2} \frac{I_{-\nu}(x)-I_{\nu}(x)}{\sin v \pi}
$$

and for integral $v=n$

$$
K_{n}(x)=\lim _{v \rightarrow n} K_{\nu}(x) .
$$

Since $I_{\nu}(x)$ and $K_{\nu}(x)$ are linearly independent on the interval $(0, \infty)$ for any value of
 $v$, the general solution of the modified Bessel equation can be written as

$$
y=c_{1} I_{\nu}(x)+c_{2} K_{\nu}(x) .
$$

The general solution of the parametric form of the modified Bessel equation of order $v$

$$
x^{2} y^{\prime \prime}+x y^{\prime}-\left(\alpha^{2} x^{2}+v^{2}\right) y=0
$$

on the interval $(0, \infty)$ can be written as

$$
y=c_{1} I_{\nu}(\alpha x)+c_{2} K_{\nu}(\alpha x) .
$$

Another equation, which is important because many differential equations fit into its form by appropriate choice of parameters, is

$$
y^{\prime \prime}+\frac{1-2 a}{x} y^{\prime}+\left(b^{2} c^{2} x^{2 c-2}+\frac{a^{2}-p^{2} c^{2}}{x^{2}}\right) y=0
$$

whose general solution can be found in the form

$$
y=x^{a}\left[c_{1} J_{p}\left(b x^{c}\right)+c_{2} Y_{p}\left(b x^{c}\right)\right] .
$$

by means of change of both the independent and dependent variables:

$$
z=b x^{c}, \quad y(x)=\left(\frac{z}{b}\right)^{a / c} w(z) .
$$

and if $p$ is not an integer, then $Y_{p}(x)$ above can be replaced by $J_{-p}$.

## Example 3

Find the general solution of $x y^{\prime \prime}+3 y^{\prime}+9 y=0$ on the interval $[0, \infty)$.

## Solution:

We can rewrite the equation into its standard form

$$
y^{\prime \prime}+\frac{3}{x} y^{\prime}+\frac{9}{x} y=0
$$

and make the identifications

$$
1-2 a=3, \quad b^{2} c^{2}=9, \quad 2 c-2=-1, \quad \text { and } a^{2}-p^{2} c^{2}=0
$$

which imply $a=-1$ and $c=\frac{1}{2}$. From the remaining the equations, we get $b=6$ and $p=2$.

The general solution on the interval $[0, \infty)$ is then

$$
y=x^{-1}\left[c_{1} J_{2}\left(6 x^{1 / 2}\right)+c_{2} Y_{2}\left(6 x^{1 / 2}\right)\right] .
$$

Example 4: Free undamped motion of mass $m$ on an aging spring:

$$
m x^{\prime \prime}+k e^{-\alpha t} x=0, \quad \alpha>0
$$

Solution:
The change of variables $s=\frac{2}{\alpha} \sqrt{\frac{k}{m}} e^{-\alpha t / 2}$ transforms the differential equation into

$$
s^{2} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} s^{2}}+s \frac{\mathrm{~d} x}{\mathrm{~d} s}+s^{2} x=0
$$

which is Bessel's equation with $v=0$. The general solution of this equation is $x=$ $c_{1} J_{0}(s)+c_{2} Y_{0}(s)$ which after re-substitution of $s$ gives

$$
x(t)=c_{1} J_{0}\left(\frac{2}{\alpha} \sqrt{\frac{k}{m}} e^{-\alpha t / 2}\right)+c_{2} Y_{0}\left(\frac{2}{\alpha} \sqrt{\frac{k}{m}} e^{-\alpha t / 2}\right)
$$

## Another example

$$
m x^{\prime \prime}+k t x=0 \quad \text { or } \quad x^{\prime \prime}+\frac{k}{m} t x=0
$$

is an Airy equation

$$
y^{\prime \prime}+\alpha^{2} x y=0
$$

Its general equation can also be written in terms of Bessel functions.

## Properties of Bessels functions

of the first and second kind of order $m, m=0,1,2, \ldots$ :
(i)

$$
J_{-m}(x)=(-1)^{m} J_{m}(x),
$$

(ii) $J_{m}(x)$ is an even function if $m$ is an even integer, and an odd function if $m$ is an odd integer:

$$
J_{m}(-x)=(-1)^{m} J_{m}(x),
$$

(iii)

$$
J_{m}(0)=\left\{\begin{array}{ll}
0, & m>0 \\
1, & m=0
\end{array},\right.
$$

(iv) $Y_{m}(x)$ is unbounded at the origin:

$$
\lim _{x \rightarrow 0^{+}} Y_{m}(x)=-\infty .
$$

The solutions of the Bessel equation of order 0 can be obtained using the Case III solutions

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} c_{n} x^{n+r_{1}}, c_{0} \neq 0, \\
& y_{2}(x)=y_{1}(x) \ln (x)+\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}} .
\end{aligned}
$$

It can be shown that

$$
\begin{aligned}
& y_{1}(x)=J_{0}(x) \\
& y_{2}(x)=J_{0}(x) \ln x-\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(k!)^{2}}\left(1+\frac{1}{2}+\cdots+\frac{1}{k}\right)\left(\frac{x}{2}\right)^{2 k} .
\end{aligned}
$$

The Bessel function of the second kind of order $0, Y_{0}(x)$, is then defined to be the linear combination

$$
\begin{aligned}
Y_{0}(x) & =\frac{2}{\pi}(\gamma-\ln 2) y_{1}(x)+\frac{2}{\pi} y_{2}(x), \quad \text { for } x>0 \\
& =\frac{2}{\pi} J_{0}(x)\left[\gamma+\ln \frac{x}{2}\right]-\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(k!)^{2}}\left(1+\frac{1}{2}+\cdots+\frac{1}{k}\right)\left(\frac{x}{2}\right)^{2 k},
\end{aligned}
$$

where $\gamma=0.57721566 \ldots$ is Euler's constant. Due to the presence of the logarithmic term, $Y_{0}(x)$ is discontinuous at $x=0$.

## Differential recurrence relations

$$
x J_{v}^{\prime}(x)=v J_{v}(x)-x J_{v+1}(x)
$$

relate Bessel functions of different orders.

Example 5: Derivation using the series definition

Solution:
It follows from

$$
J_{\nu}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+v+n)}\left(\frac{x}{2}\right)^{2 n+v}
$$

that

$$
\begin{aligned}
x J_{v}^{\prime}(x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n+v)}{n!\Gamma(1+v+n)}\left(\frac{x}{2}\right)^{2 n+v} \\
& =v \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+v+n)}\left(\frac{x}{2}\right)^{2 n+v}+2 \sum_{n=0}^{\infty} \frac{(-1)^{n} n}{n!\Gamma(1+v+n)}\left(\frac{x}{2}\right)^{2 n+v} \\
& =v J_{v}(x)+x \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n-1)!\Gamma(1+v+n)}\left(\frac{x}{2}\right)^{2 n+v-1} \\
& =v J_{v}(x)-x \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(2+v+k)}\left(\frac{x}{2}\right)^{2 k+v+1}=v J_{v}(x)-x J_{v+1}(x),
\end{aligned}
$$

where $k=n-1$.

The recurrence relation can be written in an alternative form: dividing the recurrence relation by $x$ gives

$$
J_{v}^{\prime}(x)-\frac{v}{x} J_{v}(x)=-J_{v+1}(x) .
$$

which is a linear first-order differential equation in $J_{\nu}(x)$. Multiplying both sides by by the integrating factor $x^{-v}$ yields

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[x^{-v} J_{\nu}(x)\right]=-x^{-v} J_{\nu+1}(x) .
$$

It can similarly be shown that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[x^{v} J_{v}(x)\right]=x^{v} J_{v-1}(x)
$$

The differential recurrence relations above are also valid for the Bessel function of the second kind $Y_{\nu}(x)$. When $v=0$, the first differential recurrence relation gives

$$
J_{0}^{\prime}(x)=-J_{1}(x) \quad \text { and } \quad Y_{0}^{\prime}(x)=-Y_{1}(x) .
$$

## Sperical Bessel functions

When the order $v$ is half an odd integer, $\pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \ldots$, the Bessel functions of the first kind $J_{\nu}(x)$ can be expressed in terms of the elementary functions $\sin x, \cos x$ and powers of $x$ and are called spherical Bessel functions.

Consider the case $v=\frac{1}{2}$ :

$$
J_{1 / 2}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma\left(1+\frac{1}{2}+n\right)}\left(\frac{x}{2}\right)^{2 n+1 / 2} .
$$

Using that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ and the property $\Gamma(1+\alpha)=\alpha \Gamma(\alpha)$, we can obtain the values of $\Gamma\left(1+\frac{1}{2}+n\right)$ for $n=0, n=1, n=3$ etc.

The values of $\Gamma\left(1+\frac{1}{2}+n\right)$ for $n=0, n=1, n=3$ :

$$
\begin{aligned}
& \Gamma\left(\frac{3}{2}\right)=\Gamma\left(1+\frac{1}{2}\right)=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{1}{2} \sqrt{\pi}, \\
& \Gamma\left(\frac{5}{2}\right)=\Gamma\left(1+\frac{3}{2}\right)=\frac{3}{2} \Gamma\left(\frac{3}{2}\right)=\frac{3}{2^{2}} \sqrt{\pi}, \\
& \Gamma\left(\frac{7}{2}\right)=\Gamma\left(1+\frac{5}{2}\right)=\frac{5}{2} \Gamma\left(\frac{5}{2}\right)=\frac{5 \cdot 3}{2^{3}} \sqrt{\pi}=\frac{5 \cdot 4.3 \cdot 2 \cdot 1}{2^{3} \cdot 4.2} \sqrt{\pi}=\frac{5!}{2^{5} 2!} \sqrt{\pi}, \\
& \Gamma\left(\frac{9}{2}\right)=\Gamma\left(1+\frac{7}{2}\right)=\frac{7}{2} \Gamma\left(\frac{7}{2}\right)=\frac{7.5!}{2^{6} 2!} \sqrt{\pi}=\frac{7.6 \cdot 5!}{2^{6} \cdot 6 \cdot 2!} \sqrt{\pi}=\frac{7!}{2^{7} 3!} \sqrt{\pi} .
\end{aligned}
$$

In general

$$
\Gamma\left(1+\frac{1}{2}+n\right)=\frac{(2 n+1)!}{2^{2 n+1} n!} \sqrt{\pi}
$$

Consequently

$$
\begin{aligned}
J_{1 / 2}(x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\frac{(2 n+1)!}{2^{2 n+1} n!} \sqrt{\pi}}\left(\frac{x}{2}\right)^{2 n+1 / 2} . \\
& =\sqrt{\frac{2}{\pi x}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} .
\end{aligned}
$$

The infinite series above is the Maclaurin series for $\sin x$ and thus

$$
J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x
$$

Similarly it can be shown that

$$
J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x
$$

