
Special functions

- Bessel’s equations



Special Functions

The differential equation

x2y00 + xy0 + (x2 � ⌫2)y = 0

is called Bessel’s equation of order ⌫. It occurs frequently in advanced studies in

applied mathematics, physics and engineering.

Its solutions are called Bessel functions.

In following we will assume that ⌫ � 0 and we will seek series solutions of Bessel’s

equation about x = 0 which is its regular singular point.



The solution:
Since x = 0 is a regular singular point of Bessel’s equation, there is at least one

solution of the form y(x) =
P1

n=0 cnxn+r
.

Substituting this into the equation gives

x2y00 + xy0 + (x2 � ⌫2)y =

=

1X

n=0
cn(n + r)(n + r � 1)xn+r +

1X

n=0
cn(n + r)xn+r +

1X

n=0
cnxn+r+2 � ⌫2

1X

n=0
cnxn+r

= c0(r2 � r + r � ⌫2)xr + xr
1X

n=1
cn[(n + r)(n + r � 1) + (n + r) � ⌫2]xn + xr

1X

n=0
cnxn+2

= c0(r2 � ⌫2)xr + xr
1X

n=1
cn[(n + r)2 � ⌫2]xn + xr

1X

n=0
cnxn+2.



We see that the indicial equation is r2 � ⌫2 = 0, so the roots are r1 = ⌫ and r2 = �⌫.

When r1 = ⌫, the equation above becomes

x⌫
1X

n=1
cnn(n + 2)xn + x⌫

1X

n=0
cnxn+2

= x⌫
2
6666664(1 + 2⌫)c1x +

1X

n=2
cnn(n + 2⌫)xn +

1X

n=0
cnxn+2

3
7777775

= x⌫
2
6666664(1 + 2⌫)c1x +

1X

k=0
[(k + 2)(k + 2 + 2⌫)ck+2 + ck]xk+2

3
7777775 = 0.

Therefore (1 + 2⌫)c1 = 0 and (k + 2)(k + 2 + 2⌫)ck+2 + ck = 0.



The relation (k + 2)(k + 2 + 2⌫)ck+2 + ck = 0 imply the recurrence

ck+2 =
�ck

(k + 2)(k + 2 + 2⌫)
, k = 0, 1, 2 . . . .

From (1 + 2⌫)c1 = 0, the choice c1 = 0 implies c3 = c5 · · · = 0.

For k = 0, 2, 4 . . . we find letting k + 2 = 2n, n = 1, 2, 3, . . . , that

c2n = �
c2n�2

22n(n + ⌫)
.



Thus explicitly

c2 = �
c0

22.1.(1 + ⌫)
c4 = �

c2
22.2(2 + ⌫)

= � c0
24.1.2(1 + ⌫)(2 + ⌫)

c6 = �
c2

22.3(3 + ⌫)
= � c0

26.1.2.3(1 + ⌫)(2 + ⌫)(3 + ⌫)
...

c2n = �
(�1)nc0

22nn!(1 + ⌫)(2 + ⌫) . . . (n + ⌫)
, n = 1, 2, 3 . . . .

It is standard to choose c0 to be a specific value, namely

c0 =
1

2⌫�(1 + ⌫)
,

where �(1 + ⌫) is the gamma function.



Gamma function

Euler’s integral definition:

�(x) =
Z 1

0
tx�1e�t dt.

Though this integral does not converge for x < 0 , it can be shown by other definitions

that the gamma function is defined for all real and complex values except

x = �n, n = 0, 1, 2, . . . .
The gamma function has a convenient property

�(1 + ↵) = ↵�(↵).
When n is a positive integer

�(n + 1) = n!
so the gamma function is often called generalized factorial function.



The recurrence property gamma function �(1 + ↵) = ↵�(↵) allows us to reduce the

product in the denominator of c2n to one term. For example

�(1 + ⌫ + 1) = (1 + ⌫)�(1 + ⌫)
�(1 + ⌫ + 2) = (2 + ⌫)�(2 + ⌫) = (2 + ⌫)(1 + ⌫)�(1 + ⌫).

so we can write

c2n =
(�1)n

22n+⌫n!(1 + ⌫)(2 + ⌫) . . . (n + ⌫)�(1 + ⌫)
=

(�1)n

22n+⌫n!�(1 + ⌫ + n)

for n = 0, 1, 2 . . . .



Bessel functions of the first kind

The series solution y =
P1

n=0 c2nx2n+⌫
is usually denoted

J⌫(x) =
1X

n=0

(�1)n

n!�(1 + ⌫ + n)

✓x
2

◆2n+⌫
.

If ⌫ � 0, the series converges at least on the interval [0,1).

Also for the second exponent r2 = �⌫ we obtain in the same manner

J�⌫(x) =
1X

n=0

(�1)n

n!�(1 � ⌫ + n)

✓x
2

◆2n�⌫
.

The functions J⌫(x) and J�⌫(x) are called Bessel functions of the first kind of order

⌫ and �⌫ respectively. Depending on the value of ⌫, the expression for J�⌫(x) may

contain negative powers of x and hence converge on the interval (0,1).



General solution

When ⌫ = 0 than the expressions for J⌫(x) and J�⌫(x) are the same.

If ⌫ > 0 and r1 � r2 = ⌫ � (�⌫) = 2⌫ is not a positive integer, than it follows from the

Case I, that J⌫(x) and J�⌫(x) are linearly independent solutions on (0,1) and so the

general solution is

y = c1J⌫(x) + c2J�⌫(x).



From the Case II, when r1�r2 = 2⌫ is a positive integer, a second solution of Bessel’s

equation may exist. We distinguish two possibilities:

(i) When ⌫ = m is a positive integer, J�⌫(x) and J⌫(x) are not linearly independent

solutions, and specifically it can be show that J�m(x) is a constant multiple of Jm(x).

(ii) In addition, r1 � r2 = 2⌫ can be a positive integer when ⌫ is half an odd positive

integer. In this case, it can be shown that J⌫(x) and J�⌫(x) are linearly independent,

and the general solution on (0,1) is

y = c1J⌫(x) + c2J�⌫(x), ⌫ , integer.



Example 1: General solution: ⌫ is not an integer

Consider Bessel’s differential equation

x2y00 + xy0 +
 
x2 � 1

4

!
y = 0;

by identifying ⌫2 = 1
4 and ⌫ = 1

2, we get the general solution on (0,1) as

y = c1J1/2(x) + c2J�1/2(x).



Bessel functions of the second kind

If ⌫ , integer, the function defined by the linear combination

Y⌫(x) =
cos(⌫⇡)J⌫(x) � J�⌫(x)

sin(⌫⇡)
where the functions J⌫(x) are linearly independent solutions of Bessel’s equation,

another form of the general solution of this equation is

y(x) = c1J⌫(x) + c2Y⌫(x)

provided ⌫ is not an integer.



Y⌫(x) =
cos(⌫⇡)J⌫(x) � J�⌫(x)

sin(⌫⇡)
As ⌫ ! m, where m is an integer, the expression above has the indeterminate form

0/0. Using L’Hospital’s rule, it can be shown that

Ym(x) = lim
⌫!m

Y⌫(x)

exists; moreover both Ym(x) and Jm(x) are linearly independent solutions of

x2y00 + xy0 + (x2 � m2)y = 00

Hence for any value of ⌫, the general solution of Bessel’s equation on the interval

(0,1) can be written using the Bessel functions of the second kind of order ⌫

Y⌫(x) as

y = c1J⌫(x) + c2Y⌫(x).





Example 2: General solution: ⌫ is an integer

Consider Bessel’s differential equation

x2y00 + xy0 +
⇣
x2 � 9

⌘
y = 0;

by identifying ⌫2 = 9 and ⌫ = 3, we get the general solution on (0,1) as

y = c1J3(x) + c2Y3(x).



Differential equations solvable in terms of the Bessel functions

We can in some cases transform a differential equation into Bessel’s equation by

changing a variable. For example, let t = ↵x, ↵ > 0 in

x2y00 + xy0 +
⇣
↵2x2 � ⌫2

⌘
y = 0;

and then by the chain rule

dy
dx
=

dy
dt

dt
dx
= ↵

dy
dt
, and

d2y
dx2 =

d
dt

 
dy
dx

!
dt
dx
= ↵2d2y

dt2
.

The equation above then becomes

✓ t
↵

◆2
↵2d2y

dt2
+

✓ t
↵

◆
↵

dy
dt
+

⇣
t2 � ⌫2

⌘
y = 0 or t2

d2y
dt2
+ t

dy
dt
+

⇣
t2 � ⌫2

⌘
y = 0.

The last equation is Bessel’s equation of order ⌫ with solution y = c1J⌫(t) + c2Y⌫(t).



y = c1J⌫(t) + c2Y⌫(t).

By re-substituting t = ↵x into the general solution, we find that the general solution

on the interval (0,1) is

y = c1J⌫(↵x) + c2Y⌫(↵x).

The equation

x2y00 + xy0 +
⇣
↵2x2 � ⌫2

⌘
y = 0;

is called the parametric Bessel equation of order ⌫ and its general solutions are

very important in the study of certain boundary-value problems involving partial dif-

ferential equations that are expressed in cylindrical coordinates.



Another equation similar to Bessel’s equation of order ⌫

x2y00 + xy0 + (x2 � ⌫2)y = 0

is the modified Bessel equation of order ⌫

x2y00 + xy0 �
⇣
x2 + ⌫2

⌘
y = 0;

which can also be solved by substitution. Specifically with t = ix where i =
p
�1 we

get

t2
d2y
dt2
+ t

dy
dt
+
⇣
t2 � ⌫2

⌘
y = 0.

Since the solution of the last differential equation are J⌫(t) and Y⌫(t), complex-valued
solutions of the modified Bessel equation are J⌫(ix) and Y⌫(ix).



Real valued solution, called the modified Bessel function of the first kind of order

⌫, is defined in terms of J⌫(ix):

I⌫(x) = i�⌫J⌫(ix).

The modified Bessel function of the second kind of order ⌫ , integer is defined

to be

K⌫(x) =
⇡

2
I�⌫(x) � I⌫(x)

sin ⌫⇡
and for integral ⌫ = n

Kn(x) = lim
⌫!n

K⌫(x).

Since I⌫(x) and K⌫(x) are linearly independent on the interval (0,1) for any value of

⌫, the general solution of the modified Bessel equation can be written as

y = c1I⌫(x) + c2K⌫(x).



The general solution of the parametric form of the modified Bessel equation of order

⌫

x2y00 + xy0 � (↵2x2 + ⌫2)y = 0

on the interval (0,1) can be written as

y = c1I⌫(↵x) + c2K⌫(↵x).



Another equation, which is important because many differential equations fit into its

form by appropriate choice of parameters, is

y00 +
1 � 2a

x
y0 +
0
BBBB@b2c2x2c�2 +

a2 � p2c2

x2

1
CCCCA y = 0

whose general solution can be found in the form

y = xa hc1Jp(bxc) + c2Yp(bxc)
i
.

by means of change of both the independent and dependent variables:

z = bxc, y(x) =
✓z
b

◆a/c
w(z).

and if p is not an integer, then Yp(x) above can be replaced by J�p.



Example 3
Find the general solution of xy00 + 3y0 + 9y = 0 on the interval [0,1).

Solution:

We can rewrite the equation into its standard form

y00 +
3
x

y0 +
9
x

y = 0

and make the identifications

1 � 2a = 3, b2c2 = 9, 2c � 2 = �1, and a2 � p2c2 = 0

which imply a = �1 and c = 1
2. From the remaining the equations, we get b = 6 and

p = 2.

The general solution on the interval [0,1) is then

y = x�1 hc1J2(6x1/2) + c2Y2(6x1/2)
i
.



Example 4: Free undamped motion of mass m on an aging spring:

mx00 + ke�↵tx = 0, ↵ > 0.

Solution:

The change of variables s = 2
↵

q
k
me�↵t/2

transforms the differential equation into

s2d2x
ds2 + s

dx
ds
+ s2x = 0,

which is Bessel’s equation with ⌫ = 0. The general solution of this equation is x =
c1J0(s) + c2Y0(s) which after re-substitution of s gives

x(t) = c1J0

0
BBBBB@

2
↵

r
k
m

e�↵t/2
1
CCCCCA + c2Y0

0
BBBBB@

2
↵

r
k
m

e�↵t/2
1
CCCCCA .



Another example

mx00 + ktx = 0 or x00 +
k
m

tx = 0

is an Airy equation

y00 + ↵2xy = 0.

Its general equation can also be written in terms of Bessel functions.



Properties of Bessels functions
of the first and second kind of order m, m = 0, 1, 2, . . . :
(i)

J�m(x) = (�1)mJm(x),

(ii) Jm(x) is an even function if m is an even integer, and an odd function if m is an

odd integer:

Jm(�x) = (�1)mJm(x),

(iii)

Jm(0) =
(

0, m > 0
1, m = 0 ,

(iv) Ym(x) is unbounded at the origin:

lim
x!0+

Ym(x) = �1.



The solutions of the Bessel equation of order 0 can be obtained using the Case III

solutions

y1(x) =
1X

n=0
cnxn+r1, c0 , 0,

y2(x) = y1(x) ln(x) +
1X

n=0
bnxn+r2.

It can be shown that

y1(x) = J0(x)

y2(x) = J0(x) ln x �
1X

k=1

(�1)k

(k!)2

 
1 +

1
2
+ · · · + 1

k

! ✓x
2

◆2k
.



The Bessel function of the second kind of order 0, Y0(x), is then defined to be the

linear combination

Y0(x) =
2
⇡

(� � ln 2)y1(x) +
2
⇡

y2(x), for x > 0

=
2
⇡

J0(x)

� + ln

x
2

�
� 2
⇡

1X

k=1

(�1)k

(k!)2

 
1 +

1
2
+ · · · + 1

k

! ✓x
2

◆2k
,

where � = 0.57721566 . . . is Euler’s constant. Due to the presence of the logarith-

mic term, Y0(x) is discontinuous at x = 0.



Differential recurrence relations

xJ0⌫(x) = ⌫J⌫(x) � xJ⌫+1(x)

relate Bessel functions of different orders.

Example 5: Derivation using the series definition

Solution:

It follows from

J⌫(x) =
1X

n=0

(�1)n

n!�(1 + ⌫ + n)

✓x
2

◆2n+⌫



that

xJ0⌫(x) =
1X

n=0

(�1)n(2n + ⌫)
n!�(1 + ⌫ + n)

✓x
2

◆2n+⌫

= ⌫
1X

n=0

(�1)n

n!�(1 + ⌫ + n)

✓x
2

◆2n+⌫
+ 2

1X

n=0

(�1)nn
n!�(1 + ⌫ + n)

✓x
2

◆2n+⌫

= ⌫J⌫(x) + x
1X

n=1

(�1)n

(n � 1)!�(1 + ⌫ + n)

✓x
2

◆2n+⌫�1

= ⌫J⌫(x) � x
1X

k=0

(�1)k

k!�(2 + ⌫ + k)

✓x
2

◆2k+⌫+1
= ⌫J⌫(x) � xJ⌫+1(x),

where k = n � 1.



The recurrence relation can be written in an alternative form: dividing the recurrence

relation by x gives

J0⌫(x) � ⌫
x

J⌫(x) = �J⌫+1(x).

which is a linear first-order differential equation in J⌫(x). Multiplying both sides by by

the integrating factor x�⌫ yields

d
dx

h
x�⌫J⌫(x)

i
= �x�⌫J⌫+1(x).

It can similarly be shown that

d
dx
⇥
x⌫J⌫(x)

⇤
= x⌫J⌫�1(x).

The differential recurrence relations above are also valid for the Bessel function of

the second kind Y⌫(x). When ⌫ = 0, the first differential recurrence relation gives

J00(x) = �J1(x) and Y00(x) = �Y1(x).



Sperical Bessel functions

When the order ⌫ is half an odd integer, ±1
2,±

3
2,±

5
2, . . . , the Bessel functions of the

first kind J⌫(x) can be expressed in terms of the elementary functions sin x, cos x and

powers of x and are called spherical Bessel functions.

Consider the case ⌫ = 1
2:

J1/2(x) =
1X

n=0

(�1)n

n!�
⇣
1 + 1

2 + n
⌘
✓x
2

◆2n+1/2
.

Using that �
⇣
1
2
⌘
=
p
⇡ and the property �(1 + ↵) = ↵�(↵), we can obtain the values

of �
⇣
1 + 1

2 + n
⌘

for n = 0, n = 1, n = 3 etc.



The values of �
⇣
1 + 1

2 + n
⌘

for n = 0, n = 1, n = 3:

�

 
3
2

!
= �

 
1 +

1
2

!
=

1
2
�

 
1
2

!
=

1
2
p
⇡,

�

 
5
2

!
= �

 
1 +

3
2

!
=

3
2
�

 
3
2

!
=

3
22
p
⇡,

�

 
7
2

!
= �

 
1 +

5
2

!
=

5
2
�

 
5
2

!
=

5.3
23
p
⇡ =

5.4.3.2.1
23.4.2

p
⇡ =

5!
252!

p
⇡,

�

 
9
2

!
= �

 
1 +

7
2

!
=

7
2
�

 
7
2

!
=

7.5!
262!

p
⇡ =

7.6.5!
26.6.2!

p
⇡ =

7!
273!

p
⇡.

In general

�

 
1 +

1
2
+ n

!
=

(2n + 1)!
22n+1n!

p
⇡.



Consequently

J1/2(x) =
1X

n=0

(�1)n

(2n+1)!
22n+1n!

p
⇡

✓x
2

◆2n+1/2
.

=

r
2
⇡x

1X

n=0

(�1)n

(2n + 1)!
x2n+1.

The infinite series above is the Maclaurin series for sin x and thus

J1/2(x) =

r
2
⇡x

sin x.

Similarly it can be shown that

J�1/2(x) =

r
2
⇡x

cos x.


