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Series Solutions of Linear Differential Equations
Solutions about singular points

Example:

Consider the differential equations

y00 + xy = 0, xy00 + y = 0

We know how to find two distinct solutions of the first equation around x = 0 because

this point is an ordinary point.

However, finding two infinite series solutions of the second equation about the point

x = 0 is a more difficult task as this point is a singular point of the equation.



A singular point x = x0 of a linear second-order differential equation

a2(x)y00 + a1(x)y0 + a0(x)y = 0

is further classified as either regular or irregular. Consider again the standard form

of the equation:

y00 + P(x)y0 + Q(x)y = 0.

Definition
A singular point x0 is said to be a regular singular point of the differential equation

above if the functions p(x) = (x� x0)P(x) and q(x) = (x� x0)2Q(x) are both analytic at

x = x0. A singular point that is not regular is said to be an irregular singular point
of the equation.



Polynomial coefficients

We are primarily interested in linear equations

a2(x)y00 + a1(x)y0 + a0(x)y = 0

where the coefficients are a2(x), a1(x), and a0(x) are polynomials with no common

factors.

If a2(x0) = 0, then x = x0 is a singular point of the equation since at least one of the

rational functions P(x) = a1(x)/a2(x) and Q(x) = a0(x)/a2(x) fails to be analytic at

that point.

Since a2(x) is a polynomial and x0 is one of its zeros, it follows that x � x0 is a factor

of a2(x). This means that after a1(x)/a2(x) and a0(x)/a2(x) are reduced to lowest

term, the factor x � x0 must remain, to some positive integer power, in one or both

denominators.



Suppose that x = x0 is a singular point of the equation but that both the functions

p(x) = (x � x0)P(x) and q(x) = (x � x0)2Q(x) are analytic at x0. Then multiplying P(x)
by x � x0 and Q(x) by (x � x0)2

cancels the term x � x0 in the denominators:

If x � x0 appears at most to the first power in the denominator of P(x) and at
most to the second power in the denominator of Q(x), then x = x0 is a regular
singular point.

Moreover, if x = x0 is a regular singular point and we multiply the differential equation

y00 + P(x)y0 + Q(x)y = 0.

by (x � x0)2
, then the original equation can be put into the form:

(x � x0)2y00 + (x � x0)p(x)y0 + q(x)y = 0

where p and q are analytic at x = x0.



Example 1: Classification of singular points

The points x = 2 and x = �2 are singular points of the equation

(x2 � 4)2y00 + 3(x � 2)y0 + 5y = 0.

After dividing the equation by (x2�4)2 = (x�2)2(x+2)2
and reducing the coefficients

to the lowest term, we get

P(x) =
3

(x � 2)(x + 2)2 , Q(x) =
5

(x � 2)2(x + 2)2 .

We can now test P(x) and Q(x) at each singular point.



i) x = 2:

In order for x = 2 to be a regular singular point, the factor x � 2 can appear at most

to the first power in the denominator of P(x) and at most to the second power in the

denominator of Q(x). Both of these conditions are satisfied, so x = 2 is a regular

singular point.

Alternatively, both rational functions

p(x) = (x � 2)P(x) =
3

(x + 2)2 , q(x) = (x � 2)2Q(x) =
5

(x + 2)2 .

are analytic at x = 2.

In this case, we can rewrite the differential equation as

(x � 2)2y00 + (x � 2)
3

(x + 2)2y0 +
5

(x + 2)2y = 0.



ii) x = �2:

Since the factor x � (�2) = x + 2 appears to the second power in the denominator of

P(x), the point x = �2 is an irregular singular point of the equation.

Equivalently, the function

p(x) = (x + 2)P(x) =
3

(x � 2)(x + 2)
is not analytic at x = �2.



More examples:

A) x = 0 is an irregular singular point of

x3y00 � 2xy0 + 8y = 0

by inspection of denominators of P(x) = �2/x2
and Q(x) = 8/x3

.

B) x = 0 is a regular singular point of

xy00 � 2xy0 + 8y = 0

since x � 0 and (x � 0)2
does not appear in the denominators of P(x) = �2 and

Q(x) = 8/x respectively.

For a singular point x = x0, any nonnegative power of x� x0 less than one (i.e. zero),

and any nonnegative power less than two inn the denominators of P(x) and Q(x)
respectively, imply that x0 is a regular singular point.



A singular point can be a complex number:

C) x = 3i and x = �3i are two regular singular points of

(x2 + 9)y00 � 3xy0 + (1 � x)y = 0.

D) Any second order Cauchy-Euler equation

ax2y00 + bxy0 + cy = 0

with a, b, c 2 R, has a regular singular point at x = 0.



For example, the two solutions of the Cauchy-Euler equation

x2y00 � 3xy0 + 4y = 0

on the interval (0,1) are y1 = x2
and y2 = x2 ln x.

If we attempt to find a power series solution about the regular singular point x = 0,

iy =
P1

n=0 cnxn
, we would obtain only the polynomial solution y = x2

.

This is because ln x and thus also y2 = x2 ln x are not analytic at x = 0, that is, the

function y2 does not possess a Taylor series expansion centered at x = 0.



Method of Frobenius

to solve the differential equation

a2(x)y00 + a1(x)y0 + a0(x)y = 0

about a regular singular point.

Frobenius’ Theorem:

If x = x0 is a regular singular point of the differential equation above, then there exists

at least one nonzero solution of the form

y = (x � x0)r
1X

n=0
cn (x � x0)n =

1X

n=0
cn (x � x0)n+r,

where the number r is a constant to be determined. The series will converge at least

on some interval defined by 0 < x � x0 < R.



Remarks:

There is no assurance that two series solutions of the type indicated by Frobenius

Theorem can be found.

The method of Frobenius is similar to the method of undetermined series coefficients:

we substitute

y =
1X

n=0
cn (x � x0)n+r,

into the given differential equation and determine the unknown coefficients cn by a

recursion relation.

However, we first need to determine the unknown exponent r. If r is a number that is

not a nonnegative integer, then the corresponding solution is not a power series.



Example 2: Two series solutions

Because x = 0 is a regular singular point of the differential equation

3xy00 + y0 � y = 0,

we try to find the solution of the form y =
P1

n=0 cnxn+r. Since

y0 =
1X

n=0
(n + r)cnxn+r�1 and y00 =

1X

n=0
(n + r)(n + r � 1)cnxn+r�2



we get

3xy00 + y0 � y = 3
1X

n=0
(n + r)(n + r � 1)cnxn+r�1 +

1X

n=0
(n + r)cnxn+r�1 �

1X

n=0
cnxn+r

=

1X

n=0
(n + r)(3n + 3r � 2)cnxn+r�1 �

1X

n=0
cnxn+r

= xr
2
6666664r(3r � 2)c0x�1 +

1X

n=1
(n + r)(3n + 3r � 2)cnxn�1 �

1X

n=0
cnxn
3
7777775

= xr
2
6666664r(3r � 2)c0x�1 +

1X

k=0
[(k + r + 1)(3k + 3r + 1)ck+1 � ck]xk

3
7777775 = 0,

which implies r(3r � 2)c0 = 0 and

(k + r + 1)(3k + 3r + 1)ck+1 � ck = 0, k = 0, 1, 2, . . . .



Since there is no reason to consider c0 = 0 we must have

r(3r � 2) = 0

and

ck+1 =
ck

(k + r + 1)(3k + 3r + 1)
, k = 0, 1, 2, . . . .

The roots of the quadratic equation above are r1 =
2
3 and r2 = 0 which then give two

different recurrence relations:

r1 =
2
3
, ck+1 =

ck
(3k + 5)(k + 1)

, k = 0, 1, 2, . . .

r2 = 0, ck+1 =
ck

(k + 1)(3k + 1)
, k = 0, 1, 2, . . . .



We find explicitly from

r1 =
2
3
, ck+1 =

ck
(3k + 5)(k + 1)

, k = 0, 1, 2, . . .

the following coefficients:

c1 =
c0
5.1

c2 =
c1
8.2
=

c0
2! 5.8

c3 =
c2

11.3
=

c0
3! 5.8.11

c4 =
c3

14.4
=

c0
4! 5.8.11.14

...

cn =
c0

n! 5.8.11 . . . (3n + 2)
.



And we find explicitly from

r2 = 0, ck+1 =
ck

(k + 1)(3k + 1)
, k = 0, 1, 2, . . .

the coefficients:

c1 =
c0
1.1

c2 =
c1
2.4
=

c0
2! 1.4

c3 =
c2
3.7
=

c0
3! 1.4.7

c4 =
c3

4.10
=

c0
4! 1.4.7.10

...

cn =
c0

n! 1.4.7 . . . (3n � 2)
.



The both sets of coefficients are different but contain the same multiple of c0. Omit-
ting this, the series solutions are

y1(x) = x2/3
2
66666641 +

1X

n=1

1
n! 5.8.11 . . . (3n + 2)

xn
3
7777775

y2(x) = x0
2
66666641 +

1X

n=1

1
n! 1.4.7 . . . (3n � 2)

xn
3
7777775 .

It can be verified by the ratio test that both solutions converge for all finite x, |x| < 1.

Also, neither series is a constant multiple of the other, so y1(x) and y2(x) are linearly
independent for all x 2 R, so by superposition principle y(x) = C1y1(x) + C2y2(x) is
another solution of the differential equation 3xy00 + y0 � y = 0.

On any interval not containing the origin, such as (0,1), this linear combination
represents the general solution of this differential equation.



Indicial equation

The equation

r(3r � 2) = 0

is called the indicial equation of the problem and the values r1 =
2
3 and r2 = 0 are

called the inidical roots, or exponents, of the singularity x = 0.

In general, after substituting of y =
P1

n=0 cnxn+r into the given differential equation
and simplifying, the indicial equation is a quadratic equation in r that results from
equating the total coefficient of the lowest power of x to zero.

We solve for the two values of r and substitute these into a recurrence relation.
Frobenius Theorem guarantees that at least one nonzero solution of the assumed
series form can be found.



We can also obtain the indicial equation in advance of substituting y =
P1

n=0 cnxn+r

into the differential equation:

If x = 0 is a regular singular point of the equation, then both functions p(x) = xP(x)
and q(x) = x2Q(x) are analytic at x = 0, that is, the power series expansions

p(x) = xP(x) = a0 + a1x + a2x2 + . . . and q(x) = x2Q(x) = b0 + b1x + b2x2 + . . .

are valid on the interval that has a positive radius of convergence. By multiplying the
differential equation in the standard form by x2, we get

x2y00 + x [xP(x)] y0 +
h
x2Q(x)

i
y = 0.

After substituting y =
P1

n=0 cnxn+r and the two series above, for p(x) and q(x), and
multiplying the series, we find the indicial equation

r(r � 1) + a0r + b0 = 0.



Example 3: Two series solutions
Solve

2xy00 + (1 + x)y0 + y = 0.

Solution:

Substitute y =
P1

n=0 cnxn+r gives

2xy00 + (1 + x)y0 + y = 2
1X

n=0
(n + r)(n + r � 1)cnxn+r�1 +

1X

n=0
(n + r)cnxn+r�1

+

1X

n=0
(n + r)cnxn+r +

1X

n=0
cnxn+r

=

1X

n=0
(n + r)(2n + 2r � 1)cnxn+r�1 +

1X

n=0
(n + r + 1)cnxn+r



=

1X

n=0
(n + r)(2n + 2r � 1)cnxn+r�1 +

1X

n=0
(n + r + 1)cnxn+r

= xr
2
6666664r(2r � 1)c0x�1 +

1X

n=1
(n + r)(2n + 2r � 1)cnxn�1 +

1X

n=0
(n + r + 1)cnxn

3
7777775

= xr
2
6666664r(2r � 1)c0x�1 +

1X

k=0
[(k + r + 1)(2k + 2r + 1)ck+1 + (k + r + 1)ck]xk

3
7777775 ,

which implies

r(2r � 1) = 0

whose roots are r1 =
1
2 and r2 = 0, and the recurrence relation

(k + r + 1)(2k + 2r + 1)ck+1 + (k + r + 1)ck = 0, k = 0, 1, 2 . . . .



For r1 =
1
2, we can divide by k + 3

2 to obtain

ck+1 =
�ck

2(k + 1)
, k = 0, 1, 2 . . .

from which we can calculate the values of the coefficients

c1 =
�c0
2.1

c2 =
�c1
2.2
=

c0
22.2!

c3 =
�c2
2.3
=
�c0

23.3!
c4 =

�c3
2.4
=

c0
24.4!

...

cn =
(�1)nc0

2nn!
.



For r2 = 0, we obtain

ck+1 =
�ck

2k + 1
, k = 0, 1, 2 . . .

from which we can calculate the values of the coefficients

c1 =
�c0

1
c2 =

�c1
3
=

c0
1.3

c3 =
�c2

5
=
�c0
1.3.5

c4 =
�c3

7
=

c0
1.3.5.7

...

cn =
(�1)nc0

1.3.5.7 . . . (2n � 1)
.



Thus for the indicial root r1 =
1
2, we obtain the solution (after omitting c0)

y1(x) = x1/2
2
66666641 +

1X

n=1

(�1)n

2nn!
xn
3
7777775 =

1X

n=0

(�1)n

2nn!
xn+1/2

This series converges for x � 0 but is not defined for the negative values of x because
of the presence of x1/2.

For r2 = 0, a second solution is

y2(x) = 1 +
1X

n=1

(�1)n

1.3.5.7 . . . (2n � 1)
xn, |x| < 1.

On the interval (0,1) the general solution is

y(x) = C1y1(x) +C2y2(x).



Example 4: Only one series solution
Solve

xy00 + y = 0.
Solution:

From xP(x) = 0 and x2Q(x) = x and the fact that 0 and x are their own power series
at 0, we conclude that a0 = 0 and b0 = 0. The indicial equation

r(r � 1) + a0r + b0 = r(r � 1) = 0.
and its roots r1 = 1 and r2 = 0 lead to recurrence relations which yield exactly the
same set of coefficients.

In this case, the Frobenius method produces only one solution

y1(x) =
1X

n=0

(�1)n

n!(n + 1)!
xn+1 = x � 1

2
x2 +

1
12

x3 � 1
144

x4 + . . . .



Three cases

Suppose that x = 0 is a regular singular point of a linear second-order differential
equation and that indicial roots r1 and r2 of the singularity are real and r1 � r2.

We distinguish three cases corresponding to the nature of the indicial roots:

Case I:
If r1 and r2 are distinct and do not differ by an integer, there exist two linearly inde-
pendent solutions of the form

y1(x) =
1X

n=0
cnxn+r1, and y2(x) =

1X

n=0
bnxn+r2.

This case was illustrated in Examples 2 and 3.



Case II:

If r1 � r2 = N where N is a positive integer, then there exist two linearly independent
solutions of a linear second-order differential equation of the form

y1(x) =
1X

n=0
cnxn+r1, c0 , 0,

y2(x) = Cy1(x) ln x +
1X

n=0
bnxn+r2.

where C is a constant that can be zero.

In this case, the second solution may contain a logarithm.



Case III:

If r1 = r2 then there always exist two linearly independent solutions of a linear
second-order differential equation of the form

y1(x) =
1X

n=0
cnxn+r1, c0 , 0,

y2(x) = y1(x) ln x +
1X

n=0
bnxn+r2.

In this case, a second solution always contains a logarithm.



Finding the second solution
In the Case II, when the difference r1� r2 is a positive integer, we may or may not be
able to find two solutions having the form

y =
1X

n=0
cnxn+r.

This is to be determined after the indicial roots are found and the recurrence relation
that defines cn is carefully examined. We may be lucky enough to find two solutions
that involve only powers of x

y1(x) =
1X

n=0
cnxn+r, and y2(x) =

1X

n=0
bnxn+r

that is, y2(x) a second solution with C = 0.



In the Example 4, we see that the difference r1�r2 = 1 is an integer and the Frobenius
method failed to give a second series solution. In this situation, a second solution is

y2(x) = Cy1(x) ln x +
1X

n=0
bnxn+r2

with C , 0.

In the Case III, where the difference r1 � r2 = 0, the Frobenius method fails to give
a second series solution. The second solution will always contain a logarithm and is
actually with C = 1.
One way to obtain thus second solution with a logarithmic term is to use the fact that

y2(x) = y1(x)
Z

e�
R

P(x)dx

y2
1(x)

dx

is also a solution of y00 + P(x)y0 + Q(x)y = 0 whenever y1(x) is the known solution.




