Power series solutions about ordinary points

Consider the linear second-order differential equation

ar(x)y”" + aj(x)y’ + ag(x)y =0
which is put into the standard form by dividing by the coefficient a>(x):

Y+ P(x)y" + O(x)y = 0.
Definition
A point xq is said to be an ordinary point of the differential equation (above) if both
P(x) and Q(x) in the standard form are analytic at xy. A point that is not an ordinary
point is said to be a singular point of the equation.

Examples:
Every finite point x is an ordinary point of the equation y”’ + (e*)y” + (sin x)y = 0.
The point x = 0 is a singular point of the equation y”’ + (¢*)y” + (Inx)y = 0.



Polynomial coefficients
We will be primarily interested in differential equations with polynomial coefficients.

If the coefficients ay(x), aj(x) and ag(x) are polynomials with no common factors,
then both functions P(x) = aj(x)/az(x) and Q(x) = ag(x)/ax(x) are rational functions
and are analytic except where ay(x) = 0.

Consequently, x = xq is an ordinary point of the equation

ar(x)y” + ay(x)y" + ag(x)y = 0
if ax(xp) # 0, whereas x = xg is a singular point of the equation if ay(xg) = 0.

Examples:
The equation (x2 — 1)y” + 2xy’ + 6y = 0 has singular points at x = +1. All other finite
values of x are ordinary points.



The Cauchy-Euler equation ax?y”’ + bxy’ + ¢y = 0 has a singular point at x = 0.

The equation (x2+1)y”’ +2xy’ —y = 0 has singular points at x = +i. All other (complex)
values are ordinary points.

Theorem: Existence of power series solutions
If x = xp is an ordinary point of the differential equation

ax(x)y” + ay(x)y" + ap(x)y = 0,
we can always find two linearly independent solutions in the form of a power series
centered at xp; that is

[e.¢]
Y= en (x = xo)".
n=0

A series solution converges at least on some interval defined by |x — xo| < R, where
R is the distance from x( to the closest singular point.



The solution of the form y = Z;":O cn (x — xp)" is said to be a solution about the
ordinary point x.

The distance R is the minimum value or lower bound for the radius of convergence.

Example:

The points 1 + 2i are singular points of (x* — 2x + 5)y” + xy/ —y = 0. Theorem
guarantees, since x = 0 is an ordinary point of the equation, that we can find two
power series solutions centered at x = 0. Moreover, the solutions will have the form
¥ ,¢n X" and each will converge at least for |x| < V5 where R = V5 is the distance
from x = 0 to either of the singular points. In fact, it turns out that one of the solution is
a polynomial and thus valid for much larger values of x, specifically the entire interval

(=00, ).



Power series solution of homogeneous linear second-order ODE

The method of undetermined series coefficients:

- if x9 # 0, change the variable r = x — x(, otherwise

- substitute 220:0 cn X' into the differential equation;

- combine series;

- equate all coefficients to the r.h.s. of the equation to determine ¢,, since this is

homogeneous equation all coefficients of x¥ must be equated to zero (this does not
mean that all coefficients of the series solutions are zero!).



Example 2
Solve y"’ + xy = 0.

This is an example of Airy’s equation which is relevant for example to diffraction of
electromagnetic waves and aerodynamics.

Solution:
There are no finite singular points, so Theorem guarantees two solutions centered at

x = 0 and convergent for |x| < oo.

We assume solutions in the form of the power series

(0]

y(x) = Z cnx'.

n=0



We substitute y(x) = >.°° . ¢, x"" into the differential equation

n=0
(0] (0]
V' + xy = Z con(n — Dx"2 + x Z cnx"
n=2 n=0
(o] (o]
= Z can(n — X2 + Z cpX 1 = 0.
n=2 n=0
and rewrite the last expression using a single summation
(0] (0]
77 _ -2 n+1
V' +xy=2c + cpn(n — DX + CnX
n=3 n=0

=2cy+ ) [(k+ Dk +2)cpen + cpm1] ¥ =0
k=1



Y +xy=2¢) + Z [(k + Dk + 2)cpan + cp_1] 25 =0
k=1

Since all coefficients of x* must be equated to zero for each k, we conclude that
cp = 0, and obtain the recurrence relation for ¢,

Ck—1
- k=123, .
K2 = T Dk +2)



The coefficients are explicitly

k=1,
k=2,
k=3,
k=4,
k=S5,
k=6,
k=1,
k=8,

— €0
€3=723

_ ‘1l
C4 = 34

— c _
c5 = 75~ 0

Q)
o
|
I
o
o)
I
[\
W
n
o)

Cg = 78 =0
_% _ €0
€9 =789~ 7235689



Substituting the coefficients to the original assumption
y = cptcipx+ 02x2 + 03x3 + C4x4 + 05x5 + C6x6 + C7)C7 + ng8 + 09x9 + Cl()xlo
€0 3 €1 4 €0 6 €1 7
= + +0-—=x"—-—x"+0+ + +0
OTArTETI3Y T34t 2356 3467
_ 0] - Cl 410
2.3.5.6.8.9 3.4.6.7.9.10
After grouping the terms containing cp and the terms containing c;, we obtain the

general solution in the form

y(x) = coy1(x) + c1y2(x)
where

1 3 1 6 1 9
=1+ —=x"+ +
y1(x) 23% 72356 7235689

1 4 1 1 10
=X+ — + + +
) =t Tt 67 V34679100

+ ..




Example 3
Solve

2+ 1)y +x) —y=0.

Solution:

This differential equation has singular points at x = +i, so the power series solution
centered at xg = 0 will converge at least for |x| < 1.

We assume solutions in the form of the power series

o0

y(x) = Z cnx'.

n=0



we substitute the assumed solution into the differential equation

(ee) (ee) (o)
C+1)y +xy -y = (FF+1) Z n(n — Ve 2 + xz nep X1 - Z cpx"
n=2 n=1 n=0
o (00) o0 (60
= Z nn — Depx™ + Z n(n — Depd™2 + Z nepx'" — Z cpx’t
n=2 n=2 n=0 n=0

(00)
= 2y —cop+6c3x+cix—cix+ Z n(n — cyx"
n=2

0 0 - x
+ Z n(n — Depd™2 + Z nepx’t — Z cpx"
n=4 n=2 n=2

= 2cp —co+6c3x + Z [k(k — Dy + (k+ 2)(k + 1)cpyn + ke — ci] KK
k=2

= 2cp—co+6c3x+ ) [(k+ 1)k = e+ (k + 2)(k + Degea] 2 =0
k=2



From the last identity, we conclude that 2¢, — ¢g = 0, 6¢3 = 0, and

(k + Dk — ey + (k + 2)(k + 1)egan = 0.

thus cp = %CQ, c3 =0, and

1 -k
Cky2 = 1+kck’ k=2,3,4,....




Substituting k = 2, 3,4, ... gives the following coefficients

IR T 1
€4 = —7C=-5700= 5 2!c
2
c5 = —503 =0
3 3 1.3
C6 = —2C4=75>"7C0=2-C0
6 2.4.6 23 31
4
7 = 565 =0
5 35 135
B T T80T 546807 244
6
9 = —5¢7 =0
7 3.5.7 1.3.5.7

€10 = 108724681007 555 0



We can now write the solution

y = c¢cptcpx+ 02x2 + 03x3 + C4x4 + csx5 + c6x6 + c7x7 + 08x8 + 09x9 + cloxlo
1 1 1.3 1.3.5 1.3.5.7
= 1+ -x2———x*+ g KB+ X0 - +c1x
2" 2201 23 3| 24 4v 25 51

= coy1(x) + cy2(x).

The solutions are the power series and the polynomial
1, 1 A 1.3 S 1.3.5 8+135710
2 22 2! 233' 24 41 25 5!

1.35. ( -3)
_ 2'2 1 2
= | 2x (=D" 2n x <1

I

—

+

)
|

y1(x)

y(x) = x



Example 4
Solve

v/ — (1 +x)y=0.

Solution:
We substitute a solution in the form of a power series

y(x) = Z cnx't.
n=0
into the equation and get

V' = (1 +x)y= Z n(n — Dep™2 - Z cnd - Z cnx =0
n=2 n=0 n=0



and we rewrite the last expression as a single summation

V' —(1+x)y = 2c+ Z(k +2)(k + Degyoxk — Z cp1xK = ¢ - Z Xk =0
=1 k=1 k=1
= ha—co+§zﬁk+2Xk+lkhQ—ck4—cﬂxk=0
k=1
We obtain ¢y = cg/2 and the recurrence relation
UhTh1 21,23,

K2 =+ Dk +2)

in which the coefficients c3, ¢4, c5, ... are expressed in terms of both ¢y and c.



To simplify, we first choose ¢y # 0 and ¢; = 0 which yields coefficients for one solution
that are expressed entirely in terms of cy:

1
cp = =C
2 20
o = Cl+C():C_()=lc
3 23 23 60
on = C2+61: (o)) :ic
4 34 234 2470
c3 +Cp o 1+1 lc
C = = — | - —-| = —
> 45 456 2| 30°



Next, choosing cg = 0 and ¢ # 0 leads to the other solution to be expressed in terms
of (o8]

1

cyr = ECO =0

¢y = c1+ ¢ _ o] _ lCI
2.3 23 6

cy = ) +Cq _ (o8] _ iq
34 34 12

5 = c3+ 0 _ (o8] _ | ¢l
4.5 456 120



The general solution of the equation is then y = cgy;(x) + c1y2(x) where

1, 15 1 4 1 5
= I+=x"+-x+—=x"+—=x"+...
Y10 2" Tt T2t T30’

15 14 1 <
=Xt —x + ..
e TR 10"

y2(x)

Each series converges for all finite values of x.



Example 5: ODE with non-polynomial coefficients
Solve

y"" + (cos x)y = 0.

Solution:
The point x = 0 is an ordinary point of the equation as the function cos x is analytic

at that point. Assuming the solution in the form y(x) = Z;":O cpX’t and using the
Maclaurin series for cos x, we get

) x2 x* K0 -
o0 _ n— - -~ n
anz n(n—1)cyx +(1 2!+4! 6!+...)chx
n=0
4
x“ X
= 2c2+6C3x+IZC4x2+20c5x3+---+(1—5+Z...)(c0+c1x+c2x2+C3x3
34..=0.

1 1
=  2cp+co+(6c3+cp)x+ (12(:4 + ¢y — ECO) X2+ (20c5 +c3— Ecl)x

+...



It follows that
1 1
2¢Hy + co = 0, 603 +c1=0, 12c4+cH— ECO =0, 2OC5 +Cc3 — Ecl =0,

which gives ) = %C(), c3 = —%Cl, Cq = —%CO, c5 = 3’1_0C1’ e

By grouping terms, we get the general solution y = cgy;(x) + c1y2(x) where

= 1-= —Xx —...
y1(x) 2x +12x
1 1

y(x) = X_EX3+%X5_””

Since the differential equation has no finite singular points, both power series con-
verge for |x| < co.



