Power series solutions about ordinary points

Consider the linear second-order differential equation

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

which is put into the standard form by dividing by the coefficient $a_{2}(x)$:

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

Definition

A point x_{0} is said to be an ordinary point of the differential equation (above) if both $P(x)$ and $Q(x)$ in the standard form are analytic at x_{0}. A point that is not an ordinary point is said to be a singular point of the equation.

Examples:

Every finite point x is an ordinary point of the equation $y^{\prime \prime}+\left(e^{x}\right) y^{\prime}+(\sin x) y=0$.
The point $x=0$ is a singular point of the equation $y^{\prime \prime}+\left(e^{x}\right) y^{\prime}+(\ln x) y=0$.

Polynomial coefficients

We will be primarily interested in differential equations with polynomial coefficients.

If the coefficients $a_{2}(x), a_{1}(x)$ and $a_{0}(x)$ are polynomials with no common factors, then both functions $P(x)=a_{1}(x) / a_{2}(x)$ and $Q(x)=a_{0}(x) / a_{2}(x)$ are rational functions and are analytic except where $a_{2}(x)=0$.

Consequently, $x=x_{0}$ is an ordinary point of the equation

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

if $a_{2}\left(x_{0}\right) \neq 0$, whereas $x=x_{0}$ is a singular point of the equation if $a_{2}\left(x_{0}\right)=0$.

Examples:

The equation $\left(x^{2}-1\right) y^{\prime \prime}+2 x y^{\prime}+6 y=0$ has singular points at $x= \pm 1$. All other finite values of x are ordinary points.

The Cauchy-Euler equation $a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0$ has a singular point at $x=0$.
The equation $\left(x^{2}+1\right) y^{\prime \prime}+2 x y^{\prime}-y=0$ has singular points at $x= \pm i$. All other (complex) values are ordinary points.

Theorem: Existence of power series solutions
If $x=x_{0}$ is an ordinary point of the differential equation

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

we can always find two linearly independent solutions in the form of a power series centered at x_{0}; that is

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}
$$

A series solution converges at least on some interval defined by $\left|x-x_{0}\right|<R$, where R is the distance from x_{0} to the closest singular point.

The solution of the form $y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$ is said to be a solution about the ordinary point x_{0}.

The distance R is the minimum value or lower bound for the radius of convergence.

Example:

The points $1 \pm 2 i$ are singular points of $\left(x^{2}-2 x+5\right) y^{\prime \prime}+x y^{\prime}-y=0$. Theorem guarantees, since $x=0$ is an ordinary point of the equation, that we can find two power series solutions centered at $x=0$. Moreover, the solutions will have the form $\sum_{n=0}^{\infty} c_{n} x^{n}$ and each will converge at least for $|x|<\sqrt{5}$ where $R=\sqrt{5}$ is the distance from $x=0$ to either of the singular points. In fact, it turns out that one of the solution is a polynomial and thus valid for much larger values of x, specifically the entire interval $(-\infty, \infty)$.

Power series solution of homogeneous linear second-order ODE

The method of undetermined series coefficients:

- if $x_{0} \neq 0$, change the variable $t=x-x_{0}$, otherwise
- substitute $\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation;
- combine series;
- equate all coefficients to the r.h.s. of the equation to determine c_{n}, since this is homogeneous equation all coefficients of x^{k} must be equated to zero (this does not mean that all coefficients of the series solutions are zero!).

Example 2

Solve $y^{\prime \prime}+x y=0$.
This is an example of Airy's equation which is relevant for example to diffraction of electromagnetic waves and aerodynamics.

Solution:

There are no finite singular points, so Theorem guarantees two solutions centered at $x=0$ and convergent for $|x|<\infty$.

We assume solutions in the form of the power series

$$
y(x)=\sum_{n=0}^{\infty} c_{n} x^{n} .
$$

We substitute $y(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation

$$
\begin{aligned}
y^{\prime \prime}+x y & =\sum_{n=2}^{\infty} c_{n} n(n-1) x^{n-2}+x \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =\sum_{n=2}^{\infty} c_{n} n(n-1) x^{n-2}+\sum_{n=0}^{\infty} c_{n} x^{n+1}=0
\end{aligned}
$$

and rewrite the last expression using a single summation

$$
\begin{aligned}
y^{\prime \prime}+x y & =2 c_{2}+\sum_{n=3}^{\infty} c_{n} n(n-1) x^{n-2}+\sum_{n=0}^{\infty} c_{n} x^{n+1} \\
& =2 c_{2}+\sum_{k=1}^{\infty}\left[(k+1)(k+2) c_{k+2}+c_{k-1}\right] x^{k}=0
\end{aligned}
$$

$$
y^{\prime \prime}+x y=2 c_{2}+\sum_{k=1}^{\infty}\left[(k+1)(k+2) c_{k+2}+c_{k-1}\right] x^{k}=0
$$

Since all coefficients of x^{k} must be equated to zero for each k, we conclude that $c_{2}=0$, and obtain the recurrence relation for c_{k}

$$
c_{k+2}=-\frac{c_{k-1}}{(k+1)(k+2)}, \quad k=1,2,3, \ldots .
$$

The coefficients are explicitly

$$
\begin{aligned}
& k=1, \quad c_{3}=-\frac{c_{0}}{2.3} \\
& k=2, \quad c_{4}=-\frac{c_{1}}{3.4} \\
& k=3, \quad c_{5}=-\frac{c_{2}}{4.5}=0 \\
& k=4, \quad c_{6}=-\frac{c_{3}}{5.6}=\frac{c_{0}}{2.3 .5 .6} \\
& k=5, \quad c_{7}=-\frac{c_{4}}{6.7}=\frac{c_{1}}{3.4 .6 .7} \\
& k=6, \quad c_{8}=-\frac{c_{5}}{7.8}=0 \\
& k=7, \quad c_{9}=-\frac{c_{6}}{8.9}=-\frac{c_{0}}{2.3 .5 \cdot 6.8 .9} \\
& k=8,
\end{aligned} \quad c_{10}=-\frac{c_{7}}{9.10}=-\frac{c_{1}}{3.4 .6 .7 .9 .10 .} . ~ \$
$$

Substituting the coefficients to the original assumption

$$
\begin{aligned}
y= & c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+c_{6} x^{6}+c_{7} x^{7}+c_{8} x^{8}+c_{9} x^{9}+c_{1} 0 x^{10} \\
= & c_{0}+c_{1} x+0-\frac{c_{0}}{2.3} x^{3}-\frac{c_{1}}{3.4} x^{4}+0+\frac{c_{0}}{2.3 .5 .6} x^{6}+\frac{c_{1}}{3.4 .6 .7} x^{7}+0 \\
& -\frac{c_{0}}{2.3 .5 .6 .8 .9} x^{9}-\frac{c_{1}}{3.4 .6 .7 .9 .10} x^{10}+\ldots
\end{aligned}
$$

After grouping the terms containing c_{0} and the terms containing c_{1}, we obtain the general solution in the form

$$
y(x)=c_{0} y_{1}(x)+c_{1} y_{2}(x)
$$

where

$$
\begin{aligned}
& y_{1}(x)=1+\frac{1}{2.3} x^{3}+\frac{1}{2 \cdot 3 \cdot 5 \cdot 6} x^{6}+\frac{1}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9} x^{9}+\ldots \\
& y_{2}(x)=x+\frac{1}{3.4} x^{4}+\frac{1}{3 \cdot 4 \cdot 6 \cdot 7} x^{7}+\frac{1}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10} x^{10}+\ldots
\end{aligned}
$$

Example 3

Solve

$$
\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0
$$

Solution:

This differential equation has singular points at $x= \pm i$, so the power series solution centered at $x_{0}=0$ will converge at least for $|x|<1$.

We assume solutions in the form of the power series

$$
y(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

we substitute the assumed solution into the differential equation

$$
\begin{aligned}
\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y= & \left(x^{2}+1\right) \sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+x \sum_{n=1}^{\infty} n c_{n} x^{n-1}-\sum_{n=0}^{\infty} c_{n} x^{n} \\
= & \sum_{n=2}^{\infty} n(n-1) c_{n} x^{n}+\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=0}^{\infty} n c_{n} x^{n}-\sum_{n=0}^{\infty} c_{n} x^{n} \\
= & 2 c_{2}-c_{0}+6 c_{3} x+c_{1} x-c_{1} x+\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n} \\
& +\sum_{n=4}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=2}^{\infty} n c_{n} x^{n}-\sum_{n=2}^{\infty} c_{n} x^{n} \\
= & 2 c_{2}-c_{0}+6 c_{3} x+\sum_{k=2}^{\infty}\left[k(k-1) c_{k}+(k+2)(k+1) c_{k+2}+k c_{k}-c_{k}\right] x^{k} \\
= & 2 c_{2}-c_{0}+6 c_{3} x+\sum_{k=2}^{\infty}\left[(k+1)(k-1) c_{k}+(k+2)(k+1) c_{k+2}\right] x^{k}=0
\end{aligned}
$$

From the last identity, we conclude that $2 c_{2}-c_{0}=0,6 c_{3}=0$, and

$$
(k+1)(k-1) c_{k}+(k+2)(k+1) c_{k+2}=0
$$

thus $c_{2}=\frac{1}{2} c_{0}, c_{3}=0$, and

$$
c_{k+2}=\frac{1-k}{1+k} c_{k}, \quad k=2,3,4, \ldots
$$

Substituting $k=2,3,4, \ldots$ gives the following coefficients

$$
\begin{aligned}
c_{4} & =-\frac{1}{4} c_{2}=-\frac{1}{2.4} c_{0}=-\frac{1}{2^{2} 2!} c_{0} \\
c_{5} & =-\frac{2}{5} c_{3}=0 \\
c_{6} & =-\frac{3}{6} c_{4}=\frac{3}{2.4 .6} c_{0}=\frac{1.3}{2^{3} 3!} c_{0} \\
c_{7} & =-\frac{4}{7} c_{5}=0 \\
c_{8} & =-\frac{5}{8} c_{6}=\frac{3.5}{2.4 .6 .8} c_{0}=\frac{1.3 .5}{2^{4} 4!} c_{0} \\
c_{9} & =-\frac{6}{9} c_{7}=0 \\
c_{10} & =-\frac{7}{10} c_{8}=\frac{3.5 .7}{2.4 .6 .8 \cdot 10} c_{0}=\frac{1.3 .5 .7}{2^{5} 5!} c_{0}
\end{aligned}
$$

We can now write the solution

$$
\begin{aligned}
y & =c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+c_{6} x^{6}+c_{7} x^{7}+c_{8} x^{8}+c_{9} x^{9}+c_{1} 0 x^{10} \\
& =c_{0}\left[1+\frac{1}{2} x^{2}-\frac{1}{2^{2} 2!} x^{4}+\frac{1.3}{2^{3} 3!} x^{6}-\frac{1.3 .5}{2^{4} 4!} x^{8}+\frac{1.3 .5 .7}{2^{5} 5!} x^{10}-\ldots\right]+c_{1} x \\
& =c_{0} y_{1}(x)+c_{1} y_{2}(x) .
\end{aligned}
$$

The solutions are the power series and the polynomial

$$
\begin{aligned}
y_{1}(x) & =1+\frac{1}{2} x^{2}-\frac{1}{2^{2} 2!} x^{4}+\frac{1.3}{2^{3} 3!} x^{6}-\frac{1.3 .5}{2^{4} 4!} x^{8}+\frac{1.3 .5 .7}{2^{5} 5!} x^{10}-\ldots \\
& =1+\frac{1}{2} x^{2}+\sum_{n=2}^{\infty}(-1)^{n-1} \frac{1.3 \cdot 5 \ldots(2 n-3)}{2^{n} n!} x^{2 n}, \quad|x|<1 \\
y_{2}(x) & =x
\end{aligned}
$$

Example 4

Solve

$$
y^{\prime \prime}-(1+x) y=0 .
$$

Solution:

We substitute a solution in the form of a power series

$$
y(x)=\sum_{n=0}^{\infty} c_{n} x^{n} .
$$

into the equation and get

$$
y^{\prime \prime}-(1+x) y=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}-\sum_{n=0}^{\infty} c_{n} x^{n+1}-\sum_{n=0}^{\infty} c_{n} x^{n}=0
$$

and we rewrite the last expression as a single summation

$$
\begin{aligned}
y^{\prime \prime}-(1+x) y & =2 c_{2}+\sum_{k=1}^{\infty}(k+2)(k+1) c_{k+2} x^{k}-\sum_{k=1}^{\infty} c_{k-1} x^{k}-c_{0}-\sum_{k=1}^{\infty} c_{k} x^{k}=0 \\
& =2 c_{2}-c_{0}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}-c_{k-1}-c_{k}\right] x^{k}=0 .
\end{aligned}
$$

We obtain $c_{2}=c_{0} / 2$ and the recurrence relation

$$
c_{k+2}=\frac{c_{k}+c_{k-1}}{(k+1)(k+2)}, \quad k=1,2,3, \ldots
$$

in which the coefficients $c_{3}, c_{4}, c_{5}, \ldots$ are expressed in terms of both c_{0} and c_{1}.

To simplify, we first choose $c_{0} \neq 0$ and $c_{1}=0$ which yields coefficients for one solution that are expressed entirely in terms of c_{0} :

$$
\begin{aligned}
& c_{2}=\frac{1}{2} c_{0} \\
& c_{3}=\frac{c_{1}+c_{0}}{2.3}=\frac{c_{0}}{2.3}=\frac{1}{6} c_{0} \\
& c_{4}=\frac{c_{2}+c_{1}}{3.4}=\frac{c_{0}}{2.3 .4}=\frac{1}{24} c_{0} \\
& c_{5}=\frac{c_{3}+c_{2}}{4.5}=\frac{c_{0}}{4.5}\left[\frac{1}{6}+\frac{1}{2}\right]=\frac{1}{30} c_{0}
\end{aligned}
$$

Next, choosing $c_{0}=0$ and $c_{1} \neq 0$ leads to the other solution to be expressed in terms of c_{1}

$$
\begin{aligned}
& c_{2}=\frac{1}{2} c_{0}=0 \\
& c_{3}=\frac{c_{1}+c_{0}}{2.3}=\frac{c_{1}}{2.3}=\frac{1}{6} c_{1} \\
& c_{4}=\frac{c_{2}+c_{1}}{3.4}=\frac{c_{1}}{3.4}=\frac{1}{12} c_{1} \\
& c_{5}=\frac{c_{3}+c_{2}}{4.5}=\frac{c_{1}}{4.5 .6}=\frac{1}{120} c_{1}
\end{aligned}
$$

The general solution of the equation is then $y=c_{0} y_{1}(x)+c_{1} y_{2}(x)$ where

$$
\begin{aligned}
& y_{1}(x)=1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}+\ldots \\
& y_{2}(x)=x+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{120} x^{5}+\ldots
\end{aligned}
$$

Each series converges for all finite values of x.

Example 5: ODE with non-polynomial coefficients
Solve

$$
y^{\prime \prime}+(\cos x) y=0
$$

Solution:

The point $x=0$ is an ordinary point of the equation as the function $\cos x$ is analytic at that point. Assuming the solution in the form $y(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ and using the Maclaurin series for $\cos x$, we get

$$
\begin{aligned}
\sum_{n=2}^{\infty} & n(n-1) c_{n} x^{n-2}+\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots\right) \sum_{n=0}^{\infty} c_{n} x^{n} \\
= & 2 c_{2}+6 c_{3} x+12 c_{4} x^{2}+20 c_{5} x^{3}+\cdots+\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \cdots\right)\left(c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots\right) \\
& =2 c_{2}+c_{0}+\left(6 c_{3}+c_{1}\right) x+\left(12 c_{4}+c_{2}-\frac{1}{2} c_{0}\right) x^{2}+\left(20 c_{5}+c_{3}-\frac{1}{2} c_{1}\right) x^{3}+\cdots=0 .
\end{aligned}
$$

It follows that

$$
2 c_{2}+c_{0}=0, \quad 6 c_{3}+c_{1}=0, \quad 12 c_{4}+c_{2}-\frac{1}{2} c_{0}=0, \quad 20 c_{5}+c_{3}-\frac{1}{2} c_{1}=0,
$$

which gives $c_{2}=\frac{1}{2} c_{0}, c_{3}=-\frac{1}{6} c_{1}, c_{4}=-\frac{1}{12} c_{0}, c_{5}=\frac{1}{30} c_{1}, \ldots$.
By grouping terms, we get the general solution $y=c_{0} y_{1}(x)+c_{1} y_{2}(x)$ where

$$
\begin{aligned}
& y_{1}(x)=1-\frac{1}{2} x^{2}+\frac{1}{12} x^{4}-\ldots \\
& y_{2}(x)=x-\frac{1}{6} x^{3}+\frac{1}{30} x^{5}-\ldots
\end{aligned}
$$

Since the differential equation has no finite singular points, both power series converge for $|x|<\infty$.

