
Power series solutions about ordinary points

Consider the linear second-order differential equation

a2(x)y00 + a1(x)y0 + a0(x)y = 0

which is put into the standard form by dividing by the coefficient a2(x):

y00 + P(x)y0 + Q(x)y = 0.

Definition

A point x0 is said to be an ordinary point of the differential equation (above) if both

P(x) and Q(x) in the standard form are analytic at x0. A point that is not an ordinary

point is said to be a singular point of the equation.

Examples:

Every finite point x is an ordinary point of the equation y00 + (ex)y0 + (sin x)y = 0.

The point x = 0 is a singular point of the equation y00 + (ex)y0 + (ln x)y = 0.



Polynomial coefficients

We will be primarily interested in differential equations with polynomial coefficients.

If the coefficients a2(x), a1(x) and a0(x) are polynomials with no common factors,

then both functions P(x) = a1(x)/a2(x) and Q(x) = a0(x)/a2(x) are rational functions

and are analytic except where a2(x) = 0.

Consequently, x = x0 is an ordinary point of the equation

a2(x)y00 + a1(x)y0 + a0(x)y = 0

if a2(x0) , 0, whereas x = x0 is a singular point of the equation if a2(x0) = 0.

Examples:

The equation (x2 � 1)y00 + 2xy0 + 6y = 0 has singular points at x = ±1. All other finite

values of x are ordinary points.



The Cauchy-Euler equation ax2y00 + bxy0 + cy = 0 has a singular point at x = 0.

The equation (x2+1)y00+2xy0�y = 0 has singular points at x = ±i. All other (complex)

values are ordinary points.

Theorem: Existence of power series solutions

If x = x0 is an ordinary point of the differential equation

a2(x)y00 + a1(x)y0 + a0(x)y = 0,
we can always find two linearly independent solutions in the form of a power series

centered at x0; that is

y =
1X

n=0
cn (x � x0)n.

A series solution converges at least on some interval defined by

���x � x0
��� < R, where

R is the distance from x0 to the closest singular point.



The solution of the form y =
P1

n=0 cn (x � x0)n
is said to be a solution about the

ordinary point x0.

The distance R is the minimum value or lower bound for the radius of convergence.

Example:

The points 1 ± 2i are singular points of (x2 � 2x + 5)y00 + xy0 � y = 0. Theorem

guarantees, since x = 0 is an ordinary point of the equation, that we can find two

power series solutions centered at x = 0. Moreover, the solutions will have the form
P1

n=0 cn xn
and each will converge at least for |x| <

p
5 where R =

p
5 is the distance

from x = 0 to either of the singular points. In fact, it turns out that one of the solution is

a polynomial and thus valid for much larger values of x, specifically the entire interval

(�1,1).



Power series solution of homogeneous linear second-order ODE

The method of undetermined series coefficients:

- if x0 , 0, change the variable t = x � x0, otherwise

- substitute
P1

n=0 cn xn
into the differential equation;

- combine series;

- equate all coefficients to the r.h.s. of the equation to determine cn, since this is

homogeneous equation all coefficients of xk
must be equated to zero (this does not

mean that all coefficients of the series solutions are zero!).



Example 2

Solve y00 + xy = 0.

This is an example of Airy’s equation which is relevant for example to diffraction of

electromagnetic waves and aerodynamics.

Solution:

There are no finite singular points, so Theorem guarantees two solutions centered at

x = 0 and convergent for |x| < 1.

We assume solutions in the form of the power series

y(x) =
1X

n=0
cnxn.



We substitute y(x) =
P1

n=0 cnxn
into the differential equation

y00 + xy =
1X

n=2
cnn(n � 1)xn�2 + x

1X

n=0
cnxn

=

1X

n=2
cnn(n � 1)xn�2 +

1X

n=0
cnxn+1 = 0.

and rewrite the last expression using a single summation

y00 + xy = 2c2 +
1X

n=3
cnn(n � 1)xn�2 +

1X

n=0
cnxn+1

= 2c2 +
1X

k=1

⇥
(k + 1)(k + 2)ck+2 + ck�1

⇤
xk = 0



y00 + xy = 2c2 +
1X

k=1

⇥
(k + 1)(k + 2)ck+2 + ck�1

⇤
xk = 0

Since all coefficients of xk
must be equated to zero for each k, we conclude that

c2 = 0, and obtain the recurrence relation for ck

ck+2 = �
ck�1

(k + 1)(k + 2)
, k = 1, 2, 3, . . . .



The coefficients are explicitly

k = 1, c3 = � c0
2.3

k = 2, c4 = � c1
3.4

k = 3, c5 = � c2
4.5 = 0

k = 4, c6 = � c3
5.6 =

c0
2.3.5.6

k = 5, c7 = � c4
6.7 =

c1
3.4.6.7

k = 6, c8 = � c5
7.8 = 0

k = 7, c9 = � c6
8.9 = �

c0
2.3.5.6.8.9

k = 8, c10 = � c7
9.10 = �

c1
3.4.6.7.9.10.



Substituting the coefficients to the original assumption

y = c0 + c1x + c2x2 + c3x3 + c4x4 + c5x5 + c6x6 + c7x7 + c8x8 + c9x9 + c10x10

= c0 + c1x + 0 � c0
2.3

x3 � c1
3.4

x4 + 0 +
c0

2.3.5.6
x6 +

c1
3.4.6.7

x7 + 0

� c0
2.3.5.6.8.9

x9 � c1
3.4.6.7.9.10

x10 + . . .

After grouping the terms containing c0 and the terms containing c1, we obtain the

general solution in the form

y(x) = c0y1(x) + c1y2(x)

where

y1(x) = 1 +
1

2.3
x3 +

1
2.3.5.6

x6 +
1

2.3.5.6.8.9
x9 + . . .

y2(x) = x +
1

3.4
x4 +

1
3.4.6.7

x7 +
1

3.4.6.7.9.10
x10 + . . . .



Example 3

Solve

(x2 + 1)y00 + xy0 � y = 0.

Solution:

This differential equation has singular points at x = ±i, so the power series solution

centered at x0 = 0 will converge at least for |x| < 1.

We assume solutions in the form of the power series

y(x) =
1X

n=0
cnxn.



we substitute the assumed solution into the differential equation

(x2 + 1)y00 + xy0 � y = (x2 + 1)
1X

n=2
n(n � 1)cnxn�2 + x

1X

n=1
ncnxn�1 �

1X

n=0
cnxn

=

1X

n=2
n(n � 1)cnxn +

1X

n=2
n(n � 1)cnxn�2 +

1X

n=0
ncnxn �

1X

n=0
cnxn

= 2c2 � c0 + 6c3x + c1x � c1x +
1X

n=2
n(n � 1)cnxn

+

1X

n=4
n(n � 1)cnxn�2 +

1X

n=2
ncnxn �

1X

n=2
cnxn

= 2c2 � c0 + 6c3x +
1X

k=2

⇥
k(k � 1)ck + (k + 2)(k + 1)ck+2 + kck � ck

⇤
xk

= 2c2 � c0 + 6c3x +
1X

k=2

⇥
(k + 1)(k � 1)ck + (k + 2)(k + 1)ck+2

⇤
xk = 0



From the last identity, we conclude that 2c2 � c0 = 0, 6c3 = 0, and

(k + 1)(k � 1)ck + (k + 2)(k + 1)ck+2 = 0.

thus c2 =
1
2c0, c3 = 0, and

ck+2 =
1 � k
1 + k

ck, k = 2, 3, 4, . . . .



Substituting k = 2, 3, 4, . . . gives the following coefficients

c4 = �
1
4

c2 = �
1

2.4
c0 = �

1
22 2!

c0

c5 = �
2
5

c3 = 0

c6 = �
3
6

c4 =
3

2.4.6
c0 =

1.3
23 3!

c0

c7 = �
4
7

c5 = 0

c8 = �
5
8

c6 =
3.5

2.4.6.8
c0 =

1.3.5
24 4!

c0

c9 = �
6
9

c7 = 0

c10 = �
7
10

c8 =
3.5.7

2.4.6.8.10
c0 =

1.3.5.7
25 5!

c0
. . .



We can now write the solution

y = c0 + c1x + c2x2 + c3x3 + c4x4 + c5x5 + c6x6 + c7x7 + c8x8 + c9x9 + c10x10

= c0

"
1 +

1
2

x2 � 1
22 2!

x4 +
1.3

23 3!
x6 � 1.3.5

24 4!
x8 +

1.3.5.7
25 5!

x10 � . . .
#
+ c1x

= c0y1(x) + c1y2(x).

The solutions are the power series and the polynomial

y1(x) = 1 +
1
2

x2 � 1
22 2!

x4 +
1.3

23 3!
x6 � 1.3.5

24 4!
x8 +

1.3.5.7
25 5!

x10 � . . .

= 1 +
1
2

x2 +
1X

n=2
(�1)n�1 1.3.5 . . . (2n � 3)

2n n!
x2n, |x| < 1,

y2(x) = x.



Example 4

Solve

y00 � (1 + x)y = 0.

Solution:

We substitute a solution in the form of a power series

y(x) =
1X

n=0
cnxn.

into the equation and get

y00 � (1 + x)y =
1X

n=2
n(n � 1)cnxn�2 �

1X

n=0
cnxn+1 �

1X

n=0
cnxn = 0



and we rewrite the last expression as a single summation

y00 � (1 + x)y = 2c2 +
1X

k=1
(k + 2)(k + 1)ck+2xk �

1X

k=1
ck�1xk � c0 �

1X

k=1
ckxk = 0

= 2c2 � c0 +
1X

k=1

⇥
(k + 2)(k + 1)ck+2 � ck�1 � ck

⇤
xk = 0.

We obtain c2 = c0/2 and the recurrence relation

ck+2 =
ck + ck�1

(k + 1)(k + 2)
, k = 1, 2, 3, . . .

in which the coefficients c3, c4, c5, . . . are expressed in terms of both c0 and c1.



To simplify, we first choose c0 , 0 and c1 = 0 which yields coefficients for one solution

that are expressed entirely in terms of c0:

c2 =
1
2

c0

c3 =
c1 + c0

2.3
=

c0
2.3
=

1
6

c0

c4 =
c2 + c1

3.4
=

c0
2.3.4

=
1

24
c0

c5 =
c3 + c2

4.5
=

c0
4.5

"
1
6
+

1
2

#
=

1
30

c0

. . .



Next, choosing c0 = 0 and c1 , 0 leads to the other solution to be expressed in terms

of c1

c2 =
1
2

c0 = 0

c3 =
c1 + c0

2.3
=

c1
2.3
=

1
6

c1

c4 =
c2 + c1

3.4
=

c1
3.4
=

1
12

c1

c5 =
c3 + c2

4.5
=

c1
4.5.6

=
1

120
c1

. . .



The general solution of the equation is then y = c0y1(x) + c1y2(x) where

y1(x) = 1 +
1
2

x2 +
1
6

x3 +
1

24
x4 +

1
30

x5 + . . .

y2(x) = x +
1
6

x3 +
1
12

x4 +
1

120
x5 + . . . .

Each series converges for all finite values of x.



Example 5: ODE with non-polynomial coefficients

Solve

y00 + (cos x)y = 0.

Solution:

The point x = 0 is an ordinary point of the equation as the function cos x is analytic

at that point. Assuming the solution in the form y(x) =
P1

n=0 cnxn
and using the

Maclaurin series for cos x, we get

P1
n=2 n(n � 1)cnxn�2 +

0
BBBB@1 �

x2

2!
+

x4

4!
� x6

6!
+ . . .

1
CCCCA
1X

n=0
cnxn

= 2c2 + 6c3x + 12c4x2 + 20c5x3 + · · · +
0
BBBB@1 �

x2

2!
+

x4

4!
. . .

1
CCCCA (c0 + c1x + c2x2 + c3x3 + . . . )

= 2c2 + c0 +
�
6c3 + c1

�
x +

 
12c4 + c2 �

1
2

c0

!
x2 +

 
20c5 + c3 �

1
2

c1

!
x3 + · · · = 0.



It follows that

2c2 + c0 = 0, 6c3 + c1 = 0, 12c4 + c2 �
1
2

c0 = 0, 20c5 + c3 �
1
2

c1 = 0,

which gives c2 =
1
2c0, c3 = �1

6c1, c4 = � 1
12c0, c5 =

1
30c1, . . . .

By grouping terms, we get the general solution y = c0y1(x) + c1y2(x) where

y1(x) = 1 � 1
2

x2 +
1

12
x4 � . . .

y2(x) = x � 1
6

x3 +
1
30

x5 � . . . .

Since the differential equation has no finite singular points, both power series con-

verge for |x| < 1.


