Series Solutions of Linear Differential Equations

- solutions about ordinary points

Series Solutions of Linear Differential Equations

 IntroductionMost linear higher order ODEs with variable coefficients cannot be solved in terms of elementary functions. Instead a solution is seeked in the form of infinite series and proceeds in a manner similar to the method of undetermined coefficients.

We will first study solutions about ordinary points. Given a linear second order ODE

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

we say that a point $x=x_{0}$ is an ordinary point if, at this point, y and y^{\prime} can take on all finite values and $y^{\prime \prime}$ remains finite.

On the other hand, if $y^{\prime \prime}$ becomes infinite for any finite choice of y and y^{\prime}, point $x=x_{0}$ is called a singular.

Review of power series

A power series in $x-a$, or power series centered on a, is an infinite series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots
$$

Examples:

Power series centered at $a=-1: \sum_{n=0}^{\infty}(x+1)^{n}$.
Power series in x, or centered on $a=0: \sum_{n=0}^{\infty} 2^{n-1} x^{n}=x+2 x^{2}+4 x^{3}+\ldots$.

Convergence

A power series

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

is convergent at a specified value of x if its sequence of partial sums $\left\{S_{N}(x)\right\}$ converges, that is, if

$$
\lim _{N \rightarrow \infty} S_{N}(x)=\lim _{N \rightarrow \infty} \sum_{n=0}^{N} c_{n}(x-a)^{n}
$$

exists.

If the limit does not exist at x, the series is said to be divergent.

Interval of convergence

The interval of convergence is the set of all real numbers x for which the series converges. Every power series has an interval of convergence.

Radius of convergence

Every power series has a radius of convergence R. If $R>0$, then a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ converges for $|x-a|<R$ and diverges for $|x-a|>R$.

If the series converges only at its center a, then $R=0$.
If the series converges for all x, then $R=\infty$.
Also, $|x-a|<R$ is equivalent to $a-R<x<a+R$. A power series may or may not converge at the endpoints $a-R$ and $a+R$.

Absolute convergence

Within its interval of convergence a power series converges absolutely, that is, if x is a number in the interval of convergence and is not an endpoint of the interval, then the series of absolute values

$$
\sum_{n=0}^{\infty}\left|c_{n}(x-a)^{n}\right|
$$

converges.

Ratio test

Convergence of a power series can be determined by a ratio test:

Suppose that $c_{n} \neq 0$ for all n, and that

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}(x-a)^{n+1}}{c_{n}(x-a)^{n}}\right|=|x-a| \lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=L
$$

If $L<1$ the power series converges absolutely;
if $L>1$ the series diverges; and
if $L=1$ the test is inconclusive.

Example For the power series $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n 2^{n}}$ the ratio test gives

$$
\lim _{n \rightarrow \infty}\left|\frac{(x-3)^{n+1} / 2^{n+1}(n+1)}{(x-3)^{n} / 2^{n} n}\right|=|x-3| \lim _{n \rightarrow \infty} \frac{n}{2(n+1)}=\frac{1}{2}|x-3| .
$$

The series converges absolutely for $\frac{1}{2}|x-3|<1$, or $|x-3|<2$, or $1<x<5$ which is referred as an open interval of convergence.

The series diverges for $|x-3|>2$, that is, for $x<1$ and $x>5$.
At the left endpoint $x=1$ of the interval of convergence, the series of constants $\sum_{n=1}^{\infty}\left[(-1)^{n} / n\right]$ is convergent (by alternating series test).

At the right endpoint $x=5$, the series $\sum_{n=1}^{\infty}(1 / n)$ is the divergent harmonic series.
The interval of convergence of the series is $[1,5)$ and the radius of convergence is $R=2$.

A power series defines a function

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

whose domain is the interval of convergence of the series.

If the radius of convergence is $R>0$, then $f(x)$ is continuous, differentiable, and integrable on the interval $(a-R, a+R)$.

Moreover, $f^{\prime}(x)$ and $\int f(x) d x$ can be found by term-by-term differentiation of integration. Convergence at an endpoint may be either lost by differentiation or gained via integration.

If

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

is a power series in x, then the first two derivatives are

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty} c_{n} n x^{n-1}=\sum_{n=1}^{\infty} c_{n} n x^{n-1}, \\
y^{\prime \prime} & =\sum_{n=0}^{\infty} c_{n} n(n-1) x^{n-2}=\sum_{n=2}^{\infty} c_{n} n(n-1) x^{n-2},
\end{aligned}
$$

where the first term in the first derivative and the first two terms in the second derivative are zero and thus are omitted.

Identity property

If

$$
y=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=0, \quad R>0,
$$

for all numbers x in the interval of convergence, then $c_{n}=0$ for all n.

Analytic at a point

A function f is analytic at a point a if it can be represented by a power series in $x-a$ with a positive radius of convergence.

Examples

Functions such as $e^{x}, \cos x, \sin x, \ln (x-1)$ can be represented using Taylor series:

$$
\begin{aligned}
e^{x} & =1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

for $|x|<\infty$.
These Taylor series centered at 0 , called Maclaurin series, show that $e^{x}, \sin x$ and $\cos x$ are analytic at $x=0$.

Arithmetic of power series

Power series can be combined through the operations of addition, multiplication and division using procedures similar to addition, multiplication and division of polynomials:

- we add coefficients of like powers of x,
- use the distributive law and collect like terms, and
- perform a long division.

Example

$$
\begin{aligned}
e^{x} \sin x & =\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\ldots\right)\left(x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\frac{x^{7}}{5040} \ldots\right) \\
& =x+x^{2}+\left(-\frac{1}{6}+\frac{1}{2}\right) x^{3}+\left(-\frac{1}{6}+\frac{1}{6}\right) x^{4}+\left(\frac{1}{120}-\frac{1}{12}+\frac{1}{24}\right) x^{5}+\ldots \\
& =x+x^{2}+\frac{x^{3}}{3}-\frac{x^{5}}{30}-\ldots
\end{aligned}
$$

Since the power series for e^{x} and $\sin x$ converge for $|x|<\infty$, the product series converges on the same interval.

Shifting the summation index

It is important to simplify the sum of two or more power series, each series being expressed as a summation on its own right, to an expression involving a single summation only.

Example: Write

$$
\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=0}^{\infty} c_{n} x^{n+1}
$$

as one power series.

Solution:

It is necessary that

- both summation indices start with the same number and that
- the powers of x in each series be "in phase", i.e. if one series starts with a multiple of, say, x to the first power, then we want the other series to start with the same power:
$\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=0}^{\infty} c_{n} x^{n+1}=2.1 c_{2} x^{0}+\sum_{n=3}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=0}^{\infty} c_{n} x^{n+1}$,
where both series on the r.h.s. start with the same power of x, i.e. x^{1}.

Now to get the same summation index, we let $k=n-2$ in the first series and $k=n+1$ in the second series:

$$
2 c_{2}+\sum_{k=1}^{\infty}(k+2)(k+1) c_{k+2} x^{k}+\sum_{k=1}^{\infty} c_{k-1} x^{k}
$$

Note that k is just a "dummy" index; it is the value of the summation index that is important.

We can now complete the solution:

$$
\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=0}^{\infty} c_{n} x^{n+1}=2 c_{2}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}+c_{k-1}\right] x^{k}
$$

