Green's function methods
 - boundary value problems

$2^{\text {nd }}$-order ODEs

Boundary value problems

A boundary value problem for a second order differential equation involves conditions on $y(x)$ and $y^{\prime}(x)$ that are specified at two different points $x=a$ and $x=b$.

Conditions such as

$$
y(a)=0, y(b)=0 ; \quad y(a)=0, y^{\prime}(b)=0 ; \quad y^{\prime}(a)=0, y^{\prime}(b)=0 ;
$$

are special cases of the more general homogeneous boundary conditions

$$
\begin{aligned}
& A_{1} y(a)+B_{1} y^{\prime}(a)=0 \\
& A_{2} y(b)+B_{2} y^{\prime}(b)=0
\end{aligned}
$$

where A_{1}, A_{2}, B_{1}, and B_{2} are constants.

The goal is to find an integral solution $y_{p}(x)$ for nonhomogeneous boundary value problems defined as

$$
\begin{aligned}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y & =f(x), \\
A_{1} y(a)+B_{1} y^{\prime}(a) & =0 \\
A_{2} y(b)+B_{2} y^{\prime}(b) & =0
\end{aligned}
$$

Here we assume in addition to that $P(x), Q(x)$ and $f(x)$ are continuous on the interval $[a, b]$, also that the homogeneous problem

$$
\begin{aligned}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y & =0, \\
A_{1} y(a)+B_{1} y^{\prime}(a) & =0 \\
A_{2} y(b)+B_{2} y^{\prime}(b) & =0
\end{aligned}
$$

has only the trivial solution $y=0$.

This condition is sufficient to guarantee that a unique solution of the nonhomogeneous boundary value problem, defined above, exists and is given by an integral

$$
y_{p}(x)=\int_{a}^{b} G(x, t) f(t) d t
$$

where $G(x, t)$ is a Green's function.
The starting point for the construction of $G(x, t)$ are again the formulas for the variation of parameters

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where $y_{1}(x)$ and $y_{2}(x)$ are linearly independent on the interval $[a, b]$, and the functions $u_{1}(x)$ and $u_{2}(x)$ are determined from the equations

$$
u_{1}^{\prime}(x)=-\frac{y_{2}(x) f(x)}{W}, \quad u_{2}^{\prime}(x)=\frac{y_{1}(x) f(x)}{W} .
$$

where W is the Wronskian.

Another Green's function

Suppose $y_{1}(x)$ and $y_{2}(x)$ are linearly independent on $[a, b]$ of the associated homogeneous differential equation and that $x \in[a, b]$. we now integrate the equation for u_{1}^{\prime} on $[b, x]$ and the equation for u_{2}^{\prime} on $[a, x]$ (we will see later why)

$$
u_{1}(x)=-\int_{b}^{x} \frac{y_{2}(t) f(t)}{W} d t, \quad u_{2}(x)=\int_{a}^{x} \frac{y_{1}(t) f(t)}{W} d t
$$

A particular solution is then

$$
\begin{aligned}
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) & =y_{1}(x) \int_{x}^{b} \frac{y_{2}(t) f(t)}{W} d t+y_{2}(x) \int_{a}^{x} \frac{y_{1}(t) f(t)}{W} d t \\
& =\int_{a}^{x} \frac{y_{2}(x) y_{1}(t)}{W} f(t) d t+\int_{x}^{b} \frac{y_{1}(x) y_{2}(t)}{W} f(t) d t
\end{aligned}
$$

The r.h.s.

$$
y_{p}(x)=\int_{a}^{x} \frac{y_{2}(x) y_{1}(t)}{W} f(t) d t+\int_{x}^{b} \frac{y_{1}(x) y_{2}(t)}{W} f(t) d t
$$

can be written compactly as a single integral

$$
y_{p}(x)=\int_{a}^{b} G(x, t) f(t) d t,
$$

where the function $G(x, t)$ is

$$
G(x, t)= \begin{cases}\frac{y_{1}(t) y_{2}(x)}{W}, & a \leq t \leq x \\ \frac{y_{1}(x) y_{2}(t)}{W}, & x \leq t \leq b\end{cases}
$$

This piecewise defined function is called a Green's function for the boundary value problem that is defined above. It can be proved that $G(x, t)$ is a continuous function on the interval $[a, b]$.

If the solutions $y_{1}(x)$ and $y_{2}(x)$ are chosen such that
at $x=a, y_{1}(x)$ satisfies $A_{1} y(a)+B_{1} y^{\prime}(a)=0$, and
at $x=b, y_{2}(x)$ satisfies $A_{2} y(b)+B_{2} y^{\prime}(b)=0$,
then $y_{p}(x)$ defined above satisfies both homogeneous boundary conditions.

To see this, we use

$$
\begin{aligned}
y_{p}(x) & =u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) \\
y_{p}^{\prime}(x) & =u_{1}(x) y_{1}^{\prime}(x)+y_{1}(x) u_{1}^{\prime}(x)+u_{2}(x) y_{2}^{\prime}(x)+y_{2}(x) u_{2}^{\prime}(x) \\
& =u_{1}(x) y_{1}^{\prime}(x)+u_{2}(x) y_{2}^{\prime}(x)
\end{aligned}
$$

where we applied the assumption $y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0$ of the variation of parameters.

Observe from

$$
u_{1}(x)=-\int_{b}^{x} \frac{y_{2}(t) f(t)}{W} d t, \quad u_{2}(x)=\int_{a}^{x} \frac{y_{1}(t) f(t)}{W} d t .
$$

that $u_{1}(b)=0$ and $u_{2}(a)=0$. From the latter we can show that

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

satisfies $A_{1} y(a)+B_{1} y^{\prime}(a)=0$ whenever $y_{1}(x)$ satisfies the same boundary condition:

$$
\begin{aligned}
A_{1} y_{p}(a)+B_{1} y_{p}^{\prime}(a) & =A_{1}\left[u_{1}(a) y_{1}(a)+u_{2}(a) y_{2}(a)\right]+B_{1}\left[u_{1}(a) y_{1}^{\prime}(a)+u_{2}(a) y_{2}^{\prime}(a)\right] \\
& =u_{1}(a)\left[A_{1} y_{1}(a)+B_{1} y_{1}^{\prime}(a)\right]=0
\end{aligned}
$$

Likewise, $u_{1}(b)=0$ implies that $y_{p}(x)$ satisfies $A_{2} y(b)+B_{2} y^{\prime}(b)=0$ whenever $y_{2}(x)$ does

$$
\begin{aligned}
A_{2} y_{p}(b)+B_{1} y_{p}^{\prime}(b) & =A_{2}\left[u_{1}(b) y_{1}(b)+u_{2}(b) y_{2}(b)\right]+B_{2}\left[u_{1}(b) y_{1}^{\prime}(b)+u_{2}(b) y_{2}^{\prime}(b)\right] \\
& =u_{2}(b)\left[A_{2} y_{2}(b)+B_{2} y_{2}^{\prime}(b)\right]=0 .
\end{aligned}
$$

Theorem: Solution of a BVP
Let $y_{1}(x)$ and $y_{2}(x)$ be linearly independent solutions of

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

on the interval $[a, b]$, and suppose $y_{1}(x)$ and $y_{2}(x)$ satisfy $A_{1} y(a)+B_{1} y^{\prime}(a)=0$ and $A_{2} y(b)+B_{2} y^{\prime}(b)=0$ respectively. Then the function

$$
y_{p}(x)=\int_{a}^{b} G(x, t) f(t) d t, \quad \text { where } G(x, t)= \begin{cases}\frac{y_{1}(t) y_{2}(x)}{W}, & a \leq t \leq x \\ \frac{y_{1}(x) y_{2}(t)}{W}, & x \leq t \leq b .\end{cases}
$$

is the solution of the boundary value problem

$$
\begin{aligned}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y & =f(x), \\
A_{1} y(a)+B_{1} y^{\prime}(a) & =0 \\
A_{2} y(b)+B_{2} y^{\prime}(b) & =0 .
\end{aligned}
$$

Example 7:

Solve the boundary value problem

$$
y^{\prime \prime}+4 y=3, \quad y^{\prime}(0)=0, y(\pi / 2)=0 .
$$

The solution of the associate homogeneous equation $y^{\prime \prime}+4 y=0$ are $y_{1}(x)=\cos 2 x$ and $y_{2}(x)=\sin 2 x$ and $y_{1}^{\prime}(0)=0$ and $y_{2}(\pi / 2)=0$. The Wronskian is $W=2$ so the Green's function for the BVP is

$$
G(x, t)= \begin{cases}\frac{1}{2} \cos 2 t \sin 2 x, & 0 \leq t \leq x \\ \frac{1}{2} \cos 2 x \sin 2 t, & x \leq t \leq \pi / 2 .\end{cases}
$$

It follows from the theorem above that the solution of the BVP with $a=0$ and $b=\pi / 2$, and $f(t)=3$ is

$$
\begin{aligned}
y_{p}(x) & =3 \int_{0}^{\pi / 2} G(x, t) d t=3 \cdot \frac{1}{2} \sin 2 x \int_{0}^{x} \cos 2 t d t+3 \cdot \frac{1}{2} \cos 2 x \int_{x}^{\pi / 2} \sin 2 t d t \\
& =\frac{3}{4} \sin 2 x[\sin 2 t]_{0}^{x}+\frac{3}{4} \cos 2 x[-\cos 2 t]_{x}^{\pi / 2} \\
& =\frac{3}{4}+\frac{3}{4} \cos 2 x .
\end{aligned}
$$

Example 8: BVP

Solve the boundary value problem

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=24 x^{5}, \quad y(1)=0, y(2)=0 .
$$

This differential equation is a Cauchy-Euler differential equation.
We assume a solution of the associated homogeneous problem $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0$ in the form $y=x^{m}$, and obtain the auxiliary equation

$$
m(m-1)-3 m+3=(m-1)(m-3)=0
$$

of which the roots are $m_{1}=1$ and $m_{2}=3$. The general solution of the associated homogeneous differential equation is then

$$
y=c_{1} x+c_{2} x^{3} .
$$

$$
y=c_{1} x+c_{2} x^{3} .
$$

We apply $y(1)=0$ to the general solution; this gives $c_{1}=-c_{2}$ and by choosing $c_{2}=-1$ we get

$$
y_{1}=x-x^{3} .
$$

Applying $y(2)=0$, we get $2 c_{1}+8 c_{2}=0$ or $c_{1}=-4 c_{2}$ and by choosing $c_{2}=-1$ we get

$$
y_{2}=4 x-x^{3} .
$$

The Wronskian of these two solutions is

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left|\begin{array}{cc}
x-x^{3} & 4 x-x^{3} \\
1-3 x^{2} & 4-3 x^{2}
\end{array}\right|=6 x^{3} .
$$

The Green's function for the boundary value problem is then

$$
G(x, t)= \begin{cases}\frac{\left(t-t^{3}\right)\left(4 x-x^{3}\right)}{6 t^{3}}, & 0 \leq t \leq x \\ \frac{\left(x-x^{3}\right)\left(4 t-t^{3}\right)}{6 t^{3}}, & x \leq t \leq 2 .\end{cases}
$$

In order to identify the correct forcing function we have to write the differential equation in the standard form:

$$
y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{3}{x^{2}} y=24 x^{3} .
$$

so the forcing function is $f(t)=24 t^{3}$.

The particular solution is then

$$
\begin{aligned}
y_{p}(x) & =24 \int_{1}^{2} G(x, t) t^{3} d t \\
& =4\left(4 x-x^{3}\right) \int_{1}^{x}\left(t-t^{3}\right) d t+4\left(x-x^{3}\right) \int_{x}^{2}\left(4 t-t^{3}\right) d t \\
& =12 x-15 x^{3}+3 x^{5} .
\end{aligned}
$$

Remark:

Notice that the boundary conditions

$$
\begin{aligned}
& A_{1} y(a)+B_{1} y^{\prime}(a)=0 \\
& A_{2} y(b)+B_{2} y^{\prime}(b)=0
\end{aligned}
$$

do not uniquely determine the functions $y_{1}(x)$ and $y_{2}(x)$. There is a certain arbitrariness in the selection of these functions.

