Green’s function methods
- boundary value problems

2nd_order ODEs



Boundary value problems

A boundary value problem for a second order differential equation involves conditions
on y(x) and y’(x) that are specified at two different points x = ¢ and x = b.

Conditions such as

(@) =0,y(b) =0; ya)=0,y'(b)=0; y(a)=0,y"(b)=0;

are special cases of the more general homogeneous boundary conditions

Ary(a) + Bpy'(a) = 0
Agy(b) + Byy'(b) =

where Ay, A,, By, and B, are constants.



The goal is to find an integral solution y,(x) for nonhomogeneous boundary value
problems defined as

Y+ Py + 0y = f(x),
Apy(a) + By (@) = 0
Axy(b) + Byy'(b) = 0

Here we assume in addition to that P(x), Q(x) and f(x) are continuous on the interval
la, D], also that the homogeneous problem

Y/ + Px)y +Q(x)y = 0,
Ary(a) +Bpy'(@) = 0
Axy(b) + Boy'(b) = 0

has only the trivial solution y = 0.



This condition is sufficient to guarantee that a unique solution of the nonhomoge-
neous boundary value problem, defined above, exists and is given by an integral

b
yp(x):f G(x, ) f (1) dt,

where G(x,t) is a Green’s function.

The starting point for the construction of G(x, ) are again the formulas for the varia-
tion of parameters

yp(x) = up(x)y1(x) + up(x)y(x)
where y;(x) and y,(x) are linearly independent on the interval [a, b], and the functions
u1(x) and uy(x) are determined from the equations

Y2 (0)f(x)
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uh(x) = W

uy(x) =
where W is the Wronskian.



Another Green’s function

Suppose yi(x) and y,(x) are linearly independent on [a, b] of the associated homo-
geneous differential equation and that x € [a, b]. we now integrate the equation for
u} on [b, x] and the equation for u} on [a, x] (we will see later why)

Ml(x):_fbxyz(t)uf(t) dr. uz(x):faxm(f)wf(t) ”

A particular solution is then

b X
yp(X) = u1(X)y1(x) + up()y2(x) = y1(x) f yz(t)wf(t) dt + yp(x) f Y 1(3{0) di

S VIENN0) b y1(x)y2(0)
= L—W f(t)dt+fx—w f(t) dt.



The r.h.s.
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can be written compactly as a single integral

X b
yp(x)=f Y2(X)y1(l‘)f(t) dt+f yl(x%fsz(r) &

b
yp(x) = f G(x,0)f (1) dt,
a
where the function G(x, ¢) is

Mw, a<t<x

G(x,t) =
MLWW, x<t<bh.
This piecewise defined function is called a Green’s function for the boundary value

problem that is defined above. It can be proved that G(x, ) is a continuous function
on the interval [a, b].



If the solutions y;(x) and y,(x) are chosen such that

at x = a, y;(x) satisfies A;y(a) + B;y’(a) = 0, and
at x = b, y»(x) satisfies A»y(b) + By'(b) = 0,

then y,(x) defined above satisfies both homogeneous boundary conditions.

To see this, we use
yp(x) = up(x)y(x) + up(x)y2(x)
yp(0) = up(x)y|(x) + y1(0u] (x) + ua(x)y5(x) + yo(x)u5(x)
= up(x)y](x) + up(x)y5(x)

where we applied the assumption ylu’l + yzu’2 = 0 of the variation of parameters.



Observe from

ui(x) = — f"yz(t)f(t) g, () = fxyl(f)f(f) ”
b a
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that u;(b) = 0 and ur(a) = 0. From the latter we can show that

Yp(x) = u(0)y1(x) + up(x)y2(x)
satisfies Ayy(a) + B1y'(a) = 0 whenever y;(x) satisfies the same boundary condition:
Ayp(@) + Biyp(a@) = Ap[ug(@yi(a) + ux(@y(@)] + By |ui(@)y] (@) + up(a)yy(a)]

= ui(@)|A1yi@) + Biyj(@| =0

Likewise, u1(b) = 0 implies that y,(x) satisfies A,y(b) + B>y’ (b) = 0 whenever y>(x)
does

Ayp(D) + Biyp(b) = A2 [u1(0)y1(b) + up(b)y2(b)] + B2 [ur (0)y(b) + ua(b)y5(b)]
= u(b) [A2y2(b) + Boy)(b)| = 0.



Theorem: Solution of a BVP
Let y;(x) and y,>(x) be linearly independent solutions of

Y+ Py +0x)y = 0

on the interval [a, b], and suppose y;(x) and y,(x) satisfy A{y(a) + B1y'(a) = 0 and
A>y(b) + B>y’ (b) = 0 respectively. Then the function

Y1(O)y2(x) a<1<x

b
= G(x,0)f () dt, here G(x,t) = w o T
)’p(x) L (x, ) f (1) w (x,1) {Mv&@g), <t <h

is the solution of the boundary value problem

Y+ Py + 0y = f(x),
Ary(a) + By'(@) = 0
Ayy(b) + Boy'(b) = 0.



Example 7:

Solve the boundary value problem
y// + 4}7 = 3, yl(o) = O,y(ﬂ-/z) =0.

The solution of the associate homogeneous equation y”’ + 4y = 0 are y;(x) = cos 2x
and y;(x) = sin2x and y’l(O) = 0 and yy(r/2) = 0. The Wronskian is W = 2 so the

Green’s function for the BVP is

%cosZtsian, 0<t<ux
G(x, 1) =

%cos 2xsin2t, x<t<nm/2.



It follows from the theorem above that the solution of the BVP witha = 0and b = n/2,
and f(r) =3is

/2 1 X 1 /2
yp(x) 3 f G(x,t)dt = 3.=sin 2xf cos 2t dt + 3.= cos 2xf sin 2t dt
0 2 0 2 x

3 3
= ) sin 2x [sin 2t]6€ + 1 cos 2x [— cos 2t]7;/2

= Z+10032x.



Example 8: BVP

Solve the boundary value problem

2y = 3xy’ +3y=24x, y(1)=0,y2) = 0.

This differential equation is a Cauchy-Euler differential equation.

We assume a solution of the associated homogeneous problem x2y”” —3xy’ +3y = 0
in the form y = x™, and obtain the auxiliary equation

mm—-1)-3m+3=m-1)m-3)=0
of which the roots are m; = 1 and m, = 3. The general solution of the associated

homogeneous differential equation is then

y=cCc1x+ 02x3.



y=cCc1x+ 02x3.

We apply y(1) = 0 to the general solution; this gives ¢; = —cp and by choosing
cr = —1 we get

y1:x—x3.

Applying y(2) = 0, we get 2c + 8¢y = 0 or ¢; = —4¢, and by choosing ¢, = —1 we get

Vo = 4x — x°.

The Wronskian of these two solutions is

3 3
x—x> 4x—-x
WOI@.0200) =| [ 4 2| =6



The Green’s function for the boundary value problem is then

_43 .3
(o) o,

G(x,1) =<

.3 3
) s

In order to identify the correct forcing function we have to write the differential equa-
tion in the standard form:

3 3
' —=y + =y = 24x.
X

so the forcing function is f(r) = 247.



The particular solution is then

2
yp(x) = 24 f G(x,0) 1 dt
1

= a(ae) [ ) e ale) [ (o) a

12x — 15x° + 3x°.

Remark:

Notice that the boundary conditions
Ay@+Bpy'(@ = 0
Azy(b) + Byy'(b) = 0

do not uniquely determine the functions y;(x) and y,(x). There is a certain arbitrari-
ness in the selection of these functions.






