
Green’s function methods
- boundary value problems

2nd-order ODEs



Boundary value problems

A boundary value problem for a second order differential equation involves conditions
on y(x) and y0(x) that are specified at two different points x = a and x = b.

Conditions such as

y(a) = 0, y(b) = 0; y(a) = 0, y0(b) = 0; y0(a) = 0, y0(b) = 0;

are special cases of the more general homogeneous boundary conditions

A1y(a) + B1y0(a) = 0
A2y(b) + B2y0(b) = 0

where A1, A2, B1, and B2 are constants.



The goal is to find an integral solution yp(x) for nonhomogeneous boundary value
problems defined as

y00 + P(x)y0 + Q(x)y = f (x),
A1y(a) + B1y0(a) = 0
A2y(b) + B2y0(b) = 0

Here we assume in addition to that P(x), Q(x) and f (x) are continuous on the interval
[a, b], also that the homogeneous problem

y00 + P(x)y0 + Q(x)y = 0,
A1y(a) + B1y0(a) = 0
A2y(b) + B2y0(b) = 0

has only the trivial solution y = 0.



This condition is sufficient to guarantee that a unique solution of the nonhomoge-
neous boundary value problem, defined above, exists and is given by an integral

yp(x) =
Z b

a
G(x, t) f (t) dt,

where G(x, t) is a Green’s function.

The starting point for the construction of G(x, t) are again the formulas for the varia-
tion of parameters

yp(x) = u1(x)y1(x) + u2(x)y2(x)

where y1(x) and y2(x) are linearly independent on the interval [a, b], and the functions
u1(x) and u2(x) are determined from the equations

u01(x) = �y2(x) f (x)
W

, u02(x) =
y1(x) f (x)

W
.

where W is the Wronskian.



Another Green’s function

Suppose y1(x) and y2(x) are linearly independent on [a, b] of the associated homo-
geneous differential equation and that x 2 [a, b]. we now integrate the equation for
u01 on [b, x] and the equation for u02 on [a, x] (we will see later why)

u1(x) = �
Z x

b

y2(t) f (t)
W

dt, u2(x) =
Z x

a

y1(t) f (t)
W

dt.

A particular solution is then

yp(x) = u1(x)y1(x) + u2(x)y2(x) = y1(x)
Z b

x

y2(t) f (t)
W

dt + y2(x)
Z x

a

y1(t) f (t)
W

dt

=

Z x

a

y2(x)y1(t)
W

f (t) dt +
Z b

x

y1(x)y2(t)
W

f (t) dt.



The r.h.s.

yp(x) =
Z x

a

y2(x)y1(t)
W

f (t) dt +
Z b

x

y1(x)y2(t)
W

f (t) dt

can be written compactly as a single integral

yp(x) =
Z b

a
G(x, t) f (t) dt,

where the function G(x, t) is

G(x, t) =

8>>>>><
>>>>>:

y1(t)y2(x)
W , a  t  x

y1(x)y2(t)
W , x  t  b.

This piecewise defined function is called a Green’s function for the boundary value
problem that is defined above. It can be proved that G(x, t) is a continuous function
on the interval [a, b].



If the solutions y1(x) and y2(x) are chosen such that

at x = a, y1(x) satisfies A1y(a) + B1y0(a) = 0, and
at x = b, y2(x) satisfies A2y(b) + B2y0(b) = 0,

then yp(x) defined above satisfies both homogeneous boundary conditions.

To see this, we use

yp(x) = u1(x)y1(x) + u2(x)y2(x)
y0p(x) = u1(x)y01(x) + y1(x)u01(x) + u2(x)y02(x) + y2(x)u02(x)

= u1(x)y01(x) + u2(x)y02(x)

where we applied the assumption y1u01 + y2u02 = 0 of the variation of parameters.



Observe from

u1(x) = �
Z x

b

y2(t) f (t)
W

dt, u2(x) =
Z x

a

y1(t) f (t)
W

dt.

that u1(b) = 0 and u2(a) = 0. From the latter we can show that

yp(x) = u1(x)y1(x) + u2(x)y2(x)
satisfies A1y(a) + B1y0(a) = 0 whenever y1(x) satisfies the same boundary condition:

A1yp(a) + B1y0p(a) = A1
⇥
u1(a)y1(a) + u2(a)y2(a)

⇤
+ B1

h
u1(a)y01(a) + u2(a)y02(a)

i

= u1(a)
h
A1y1(a) + B1y01(a)

i
= 0

Likewise, u1(b) = 0 implies that yp(x) satisfies A2y(b) + B2y0(b) = 0 whenever y2(x)
does

A2yp(b) + B1y0p(b) = A2
⇥
u1(b)y1(b) + u2(b)y2(b)

⇤
+ B2

h
u1(b)y01(b) + u2(b)y02(b)

i

= u2(b)
h
A2y2(b) + B2y02(b)

i
= 0.



Theorem: Solution of a BVP
Let y1(x) and y2(x) be linearly independent solutions of

y00 + P(x)y0 + Q(x)y = 0

on the interval [a, b], and suppose y1(x) and y2(x) satisfy A1y(a) + B1y0(a) = 0 and
A2y(b) + B2y0(b) = 0 respectively. Then the function

yp(x) =
Z b

a
G(x, t) f (t) dt, where G(x, t) =

8>><
>>:

y1(t)y2(x)
W , a  t  x

y1(x)y2(t)
W , x  t  b.

is the solution of the boundary value problem

y00 + P(x)y0 + Q(x)y = f (x),
A1y(a) + B1y0(a) = 0
A2y(b) + B2y0(b) = 0.



Example 7:

Solve the boundary value problem

y00 + 4y = 3, y0(0) = 0, y(⇡/2) = 0.

The solution of the associate homogeneous equation y00 + 4y = 0 are y1(x) = cos 2x
and y2(x) = sin 2x and y01(0) = 0 and y2(⇡/2) = 0. The Wronskian is W = 2 so the
Green’s function for the BVP is

G(x, t) =

8>>>><
>>>>:

1
2 cos 2t sin 2x, 0  t  x

1
2 cos 2x sin 2t, x  t  ⇡/2.



It follows from the theorem above that the solution of the BVP with a = 0 and b = ⇡/2,
and f (t) = 3 is

yp(x) = 3
Z ⇡/2

0
G(x, t) dt = 3.

1
2

sin 2x
Z x

0
cos 2t dt + 3.

1
2

cos 2x
Z ⇡/2

x
sin 2t dt

=
3
4

sin 2x [sin 2t]x
0 +

3
4

cos 2x [� cos 2t]⇡/2x

=
3
4
+

3
4

cos 2x.



Example 8: BVP

Solve the boundary value problem

x2y00 � 3xy0 + 3y = 24x5, y(1) = 0, y(2) = 0.

This differential equation is a Cauchy-Euler differential equation.

We assume a solution of the associated homogeneous problem x2y00 � 3xy0 + 3y = 0
in the form y = xm, and obtain the auxiliary equation

m(m � 1) � 3m + 3 = (m � 1)(m � 3) = 0

of which the roots are m1 = 1 and m2 = 3. The general solution of the associated
homogeneous differential equation is then

y = c1x + c2x3.



y = c1x + c2x3.

We apply y(1) = 0 to the general solution; this gives c1 = �c2 and by choosing
c2 = �1 we get

y1 = x � x3.

Applying y(2) = 0, we get 2c1+ 8c2 = 0 or c1 = �4c2 and by choosing c2 = �1 we get

y2 = 4x � x3.

The Wronskian of these two solutions is

W(y1(x), y2(x)) =
������

x � x3 4x � x3

1 � 3x2 4 � 3x2

������ = 6x3.



The Green’s function for the boundary value problem is then

G(x, t) =

8>>>>>>><
>>>>>>>:

⇣
t�t3
⌘⇣

4x�x3
⌘

6t3
, 0  t  x

⇣
x�x3

⌘⇣
4t�t3

⌘

6t3
, x  t  2.

In order to identify the correct forcing function we have to write the differential equa-
tion in the standard form:

y00 � 3
x

y0 +
3
x2y = 24x3.

so the forcing function is f (t) = 24t3.



The particular solution is then

yp(x) = 24
Z 2

1
G(x, t) t3 dt

= 4
⇣
4x � x3⌘

Z x

1

⇣
t � t3

⌘
dt + 4

⇣
x � x3⌘

Z 2

x

⇣
4t � t3

⌘
dt

= 12x � 15x3 + 3x5.

Remark:
Notice that the boundary conditions

A1y(a) + B1y0(a) = 0
A2y(b) + B2y0(b) = 0

do not uniquely determine the functions y1(x) and y2(x). There is a certain arbitrari-
ness in the selection of these functions.




