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Green’s functions

Consider the linear second-order differential equation

a2(x)
d2y
dx2 + a1(x)

dy
dx
+ a0(x)y = g(x)

In mathematical analysis of physical systems it is often desirable to express the re-
sponse or output y(x) subject to either initial conditions or boundary conditions di-
rectly in terms of the forcing function or input g(x).

We will start by examining solutions of the initial value problem with the differential
equation above in the standard form

y00 + P(x)y0 + Q(x)y = f (x)
and we assume that the functions P(x), Q(x) and f (x) are continuous on some inter-
val I.



Initial value problems

The solution of the second-order initial value problem

y00 + P(x)y0 + Q(x)y = f (x), y(x0) = y0, y0(x0) = y1

can be expressed as the superposition of two solutions:
(i) the solution yh of the associated homogeneous differential equation with non-
homogeneous initial conditions

y00 + P(x)y0 + Q(x)y = 0, y(x0) = y0, y0(x0) = y1,

(ii) the solution yp of the nonhomogeneous differential equation with zero initial
conditions, so called a rest solution

y00 + P(x)y0 + Q(x)y = f (x), y(x0) = 0, y0(x0) = 0.



Green’s function

If y1 and y2 form a fundamental set of solutions on the interval I of the associated ho-
mogeneous differential equation, then a particular solution of the non-homogeneous
equation on the interval I can be found by variation of parameters:

yp(x) = u1(x)y1(x) + u2(x)y2(x)

where the functions u1(x) and u2(x) are determined from the equations

u01(x) = �y2(x) f (x)
W

, u02(x) =
y1(x) f (x)

W
where the linear independence of y1(x) and y2(x) on the interval I guarantees that
the Wronskian W , 0 for all x 2 I.



We can now integrate the derivatives u01(x) and u02(x) on the interval [x0, x] to get

yp(x) = y1(x)
Z x

x0

�y2(t) f (t)
W(t)

dt + y2(x)
Z x

x0

y1(t) f (t)
W(t)

dt

=

Z x

x0

�y1(x)y2(t)
W(t)

f (t)dt +
Z x

x0

y1(t)y2(x)
W(t)

f (t)dt,

where

W(t) =
������

y1(t) y2(t)
y01(t) y02(t)

������ .



The two integrals

yp(x) =
Z x

x0

�y1(x)y2(t)
W(t)

f (t) dt +
Z x

x0

y1(t)y2(x)
W(t)

f (t) dt

can be rewritten as a single integral

yp(x) =
Z x

x0
G(x, t) f (t) dt.

where the function G(x, t) is called the Green’s function

G(x, t) =
y1(t)y2(x) � y1(x)y2(t)

W(t)
.



Remarks:

The Green’s function depends only on the fundamental solutions y1(x) and y2(x) of
the associated homogeneous differential equation and not on the forcing function
f (x).

All linear second-order differential equations with the same left hand side but different
forcing functions have the same Green’s function.

We can call

G(x, t) =
y1(t)y2(x) � y1(x)y2(t)

W(t)
the Green’s function for the second-order differential operator

L = D2 + P(x)D + Q(x).



Example 1

Use the Green’s function to find a particular solution of y00 � y = f (x).

The solutions of the associated homogeneous equation y00 � y = 0 are

y1(x) = ex, y2(x) = e�x,

and the Wronskian W = �2. It follows from the definition of the Green’s function
above that

G(x, t) =
ete�x � exe�t

�2
=

ex�t � e�(x�t)

2
= sinh(x � t).

The particular solution is then

yp(x) =
Z x

x0
sinh(x � t) f (t)dt.



Example 2

Find the general solution of the following nonhomogeneous differential equations

(a) y00 � y = 1/x, (b) y00 � y = e2x.

From the Example 1:

(i) both ODEs have the same complementary function yc = c1e�x + c2ex, and

(ii) the Green’s function for both equations is G(x, t) = sinh(x � t).



Case (a): y00 � y = 1/x

With f (x) = 1/x we get the particular solution

yp(x) =
Z x

x0
sinh(x � t) f (t)dt =

Z x

x0

sinh(x � t)
t

dt

and the general solution y = yc + yp on any interval [x0, x] not containing the origin is

y = c1e�x + c2ex +

Z x

x0

sinh(x � t)
t

dt.



Case (b): With x0 = 0 and f (x) = e2x it follows from

y = c1e�x + c2ex +

Z x

x0
sinh(x � t) e2t dt.

that the solution of this IVP is

yp(x) =
Z x

0
sinh(x � t) e2t dt =

Z x

0

ex�t � e�(x�t)

2
e2t dt

=
1
2

ex
Z x

0
et dt � 1

2
e�x
Z x

0
e3t dt

=
1
3

e2x � 1
2

ex +
1
6

e�x

where we have held x constant throughout the integration with respect to t.



Theorem: Solution of the IVP with nonhomogeneous ODE and zero initial conditions

The function yp(x) defined by

yp(x) =
Z x

x0
G(x, t) f (t) dt.

is the solution of the initial value problem

y00 + P(x)y0 + Q(x)y = f (x), y(x0) = 0, y0(x0) = 0.

Proof:
By construction yp(x) satisfies the nonhomogeneous differential equation

y00 + P(x)y0 + Q(x)y = f (x).



Next, the definite integral has the property
R a
a = 0, so

yp(x0) =
Z x0

x0
G(x0, t) f (t) dt = 0

To show that y0p(x0) = 0 we use the Leibniz formula for the derivative of an integral

d
dx

Z v(x)

u(x)
F(x, t) dt = F(x, v(x)) v0(x) � F(x, u(x)) u0(x) +

Z v(x)

u(x)

@

@x
F(x, t) dt

to get

y0p(x) = G(x, x) f (x) +
Z x

x0

y1(t)y02(x) � y01(x)y2(t)
W(t)

f (t) dt

where the first term is zero, and hence

y0p(x0) =
Z x0

x0

y1(t)y02(x0) � y01(x0)y2(t)
W(t)

f (t) dt = 0.



Example 3: Example 2 revisited

(a) y00 � y = 1/x, y(1) = 0, y0(1) = 0, (b) y00 � y = e2x, y(0) = 0, y0(0) = 0,

Case (a): With x0 = 1 and f (x) = 1/x it follows from

y = c1e�x + c2ex +

Z x

x0

sinh(x � t)
t

dt

and the theorem that the solution of this IVP is

yp(x) =
Z x

1

sinh(x � t)
t

dt

where [1, x], x > 0.



Case (b): With x0 = 0 and f (x) = e2x it follows from

y = c1e�x + c2ex +

Z x

x0
sinh(x � t) e2t dt.

that the solution of this IVP is

yp(x) =
Z x

0
sinh(x � t) e2t dt =

Z x

0

ex�t � e�(x�t)

2
e2t dt

=
1
2

ex
Z x

0
et dt � 1

2
e�x
Z x

0
e3t dt

=
1
3

e2x � 1
2

ex +
1
6

e�x

where we have held x constant throughout the integration with respect to t.



Example 4

Solve the initial value problem

y00 + 4y = x, y(0) = 0, y0(0) = 0.

We start with constructing the Green’s function:

The two linearly independent solutions of

y00 + 4y = 0

are y1(x) = cos 2x and y2(x) = sin 2x, and the Wronskian is W = 2, so

G(x, t) =
cos 2t sin 2x � cos 2x sin 2t

2
=

1
2

sin 2(x � t).



Given the initial condition x0 = 0, the solution of the initial value problem is

yp(x) =
1
2

Z x

0
t sin 2(x � t) dt.

To evaluate the integral, we first write

yp(x) =
1
2

sin 2x
Z x

0
t cos 2t dt � 1

2
cos 2x

Z x

0
t sin 2t dt.

and integrate by parts:

yp(x) =
1
2

sin 2x
"
1
2

t sin 2t +
1
4

cos 2t
#x

0
� 1

2
cos 2x

"
�1

2
t cos 2t +

1
4

sin 2t
#x

0

=
1
4

x � 1
8

sin 2x.



Theorem

If yh is the solution of the initial value problem

y00 + P(x)y0 + Q(x)y = 0, y(x0) = y0, y0(x0) = y1,

and yp is the solution of the initial value problem

y00 + P(x)y0 + Q(x)y = f (x), y(x0) = 0, y0(x0) = 0,

on the interval I, then

y = yh + yp

is the solution of the initial value problem

y00 + P(x)y0 + Q(x)y = f (x), y(x0) = y0, y0(x0) = y1.



Proof: Since yh is a linear combination of the fundamental solutions, it follows that
y = yh + yp is a solution of the nonhomogeneous differential equation.

Moreover, since yh satisfies the initial conditions in

y00 + P(x)y0 + Q(x)y = 0, y(x0) = y0, y0(x0) = y1,

and yp satisfies the initial conditions in

y00 + P(x)y0 + Q(x)y = f (x), y(x0) = 0, y0(x0) = 0,

we have

y(x0) = yh(x0) + yp(x0) = y0 + 0 = y0
y0(x0) = y0h(x0) + y0p(x0) = y1 + 0 = y1.

We see that the response y(x) = yh(x) + yp(x) described by the full initial value
problem can be separated into response yh due to the nontrivial initial conditions
y(x0) = y0, y0(x0) = y1 and the response yp due to the forcing function.



Example 5

Solve the initial value problem

y00 + 4y = sin 2x, y(0) = 1, y0(0) = �2.

We solve two initial value problems:

(i) y00 + 4y = 0, y(0) = 1, y0(0) = �2

by applying the initial conditions to the general solution y(x) = c1 cos 2x + c2 sin 2x of
the associated homogeneous differential equation, we find c1 = 1, c2 = �1 and thus

yh(x) = cos 2x � sin 2x.



(ii) y00 + 4y = sin 2x, y(0) = 0, y0(0) = 0

Since the l.h.s. of the ODE is the same as in Example 4, we know the Green’s
function:

G(x, t) =
1
2

sin 2(x � t).

With f (t) = sin 2t, the solution of this IVP (see Problem 2) is

yp(x) =
1
2

Z x

0
sin 2(x � t) sin 2t dt.



Using the trigonometric identity

sin A sin B =
1
2

[cos(A � B) + cos(A + B)]

with A = 2(x � t) and B = 2t:

yp(x) =
1
2

Z x

0
sin 2(x � t) sin 2t dt

=
1
4

Z x

0
[cos(2x � 4t) � cos 2x] dt

=
1
4

"
�1

4
sin(2x � 4t) � t cos 2x

#x

0

=
1
8

sin 2x � 1
4

x cos 2x.



The full solution can now be written as

y(x) = yh(x) + yp(x) = cos 2x � sin 2x +
 
1
8

sin 2x � 1
4

x cos 2x
!

where the first two terms on the r.h.s. correspond to the response of the system due
to the initial conditions y(0) = 0, y0(0) = 0 and the last term to the response of the
system to the forcing function or input f (x) = sin 2x.

By combining the similar terms this physical significance is lost

y(x) = yh(x) + yp(x) = cos 2x � 7
8

sin 2x � 1
4

x cos 2x.



The beauty of the solution written in the form

y(x) = yh(x) + yp(x) = cos 2x � sin 2x +
1
2

Z x

0
sin 2(x � t) sin 2t dt

is that we can immediately write down the response of a system if the initial con-
ditions remain the same but the forcing function is changed. For example, if the
problem is changed to

y00 + 4y = x, y(0) = 1, y0(0) = �2.

we replace sin 2t in the integral by t and the solution becomes

y(x) = yh(x) + yp(x) = cos 2x � sin 2x +
1
2

Z x

0
t sin 2(x � t) dt

=
1
4

x + cos 2x � 9
8

sin 2x.



Physically relevant example to Problem 5 is offered by undamped forced motion:

The initial value problem

d2x
dt2
+ !2

0x = F0 sin!t, x(0) = 0, x0(0) = 0

has the solution of the form

x(t) = c1 cos!0t + c2 sin!0t +
F0⇣

!2
0 � !2

⌘ sin!t.

with the constants c1 = 0 and c2 = �!F0/!0
⇣
!2

0 � !
2
⌘

given by the initial conditions.

The solution of the initial value problem can be written as

x(t) =
F0

!0
⇣
!2

0 � !2
⌘
��! sin!0t + !0 sin!t

�
.



Example 6

Solve the initial value problem

y00 + 4y = f (x), y(0) = 1, y0(0) = �2,

where the forcing function f is piecewise defined:

f (x) =

8>>><
>>>:

0, x < 0
sin 2x, 0  x  2⇡
0, x > 2⇡.

Solution:
Recall the solution of Example 5 and replace sin 2t by the forcing function f (t):

y(x) = cos 2x � sin 2x +
1
2

Z x

0
sin 2(x � t) f (t) dt.



Since f (x) is piecewise defined on three intervals, we have to consider the evaluation
of the definite integral accordingly:
(i) x < 0

yp(x) =
1
2

Z x

0
sin 2(x � t)0 dt = 0.

(ii) 0  x  2⇡

yp(x) =
1
2

Z x

0
sin 2(x � t) sin 2t dt

=
1
8

sin 2x � 1
4

x cos 2x,

where we used the integration detailed in Example 5.



(iii) x > 2⇡

yp(x) =
1
2

Z 2⇡

0
sin 2(x � t) sin 2t dt +

1
2

Z x

2⇡
sin 2(x � t)0 dt

=
1
2

Z 2⇡

0
sin 2(x � t) sin 2t dt

=
1
4

"
�1

4
sin(2x � 4t) � t cos 2x

#2⇡

0

= � 1
16

sin(2x � 8⇡) � 1
2
⇡ cos 2x +

1
16

sin 2x

= �1
2
⇡ cos 2x.



Consequently, yp(x) is

yp(x) =

8>>>>>>>>><
>>>>>>>>>:

0, x < 0

1
8 sin 2x � 1

4x cos 2x, 0  x  2⇡

�1
2⇡ cos 2x, x > 2⇡.

and the complete solution is

yp(x) = yh(x) + yp(x) =

8>>>>>>>>>><
>>>>>>>>>>:

cos 2x � sin 2x, x < 0

⇣
1 � 1

4x
⌘

cos 2x � 7
8 sin 2x, 0  x  2⇡

⇣
1 � 1

2⇡
⌘

cos 2x � sin 2x, x > 2⇡.


