## HIGHER ORDER DIFFERENTIAL EQUATIONS

## Theory of linear equations

Initial-value and boundary-value problem
$n$ th-order initial value problem is
Solve: $\quad a_{n}(x) \frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}+a_{n-1}(x) \frac{\mathrm{d}^{n-1} y}{\mathrm{~d} x^{n-1}}+\ldots+a_{1}(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+a_{0}(x) y=g(x)$
Subject to:

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}=y_{n-1} \tag{1}
\end{equation*}
$$

we seek a function defined on an interval $I$, containing $x_{0}$, that satisfies the DE and the $n$ initial conditions above.

## Existence and uniqueness

## Theorem: Existence of a unique solution

Let $a_{n}(x), a_{n-1}(x), \ldots, a_{1}(x), a_{0}(x)$ and $g(x)$ be continuous on an interval $I$ and let $a_{n}(x) \neq 0$ for every $x$ in this interval. If $x=x_{0}$ in any point in this interval, then a solution $y(x)$ of the initial value problem (1) exists on the interval and is unique.

Example: Unique solution of an IVP

$$
3 y^{\prime \prime \prime}+5 y^{\prime \prime}-y^{\prime}+7 y=0, \quad y(1)=0, y^{\prime}(1)=0, y^{\prime \prime}(1)=0
$$

has the trivial solution $y=0$. Since the DE is linear with constant coefficients, all the conditions of the theorem are fulfilled, and thus $y=0$ is the only solution on any interval containing $x=1$.

## Boundary-value problem

consists of solving a linear DE of order two or greater in which the dependent variable $y$ or its derivatives are specified at different points. Example: a two-point BVP

Solve: $\quad a_{2}(x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+a_{1}(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+a_{0}(x) y=g(x)$
Subject to boundary conditions: $\quad y\left(x_{0}\right)=y_{0}, y(b)=y_{1}$
solutions of the DE


A BVP can have many, one or no solutions:


The DE $x^{\prime \prime}+16 x=0$ has the two-parameter family of solutions $x=c_{1} \cos 4 t+c_{2} \sin 4 t$. Consider the BVPs:
(1) $x(0)=0$, and $x(\pi / 2)=0 \Rightarrow c_{1}=0$ and the solution satisfies the DE for any value of $c_{2}$, thus the solution of this BVP is the one-parameter family $x=c_{2} \sin 4 t$.
(2) $x(0)=0$, and $x(\pi / 8)=0 \Rightarrow c_{1}=0$ and $c_{2}=0$, so the only solution to this BVP is $x=0$.
(3) $x(0)=0 \Rightarrow c_{1}=0$ again but the second condition $x(\pi / 2)=1$ leads to the contradiction: $1=c_{2} \sin 2 \pi=c_{2} .0=0$.

## Method of Variation of Parameters

$2^{\text {nd }}$-order ODEs

## The method of variation of parameters

Advantage: the method always yields a particular solution $y_{p}$, provided the associated homogeneous equation can be solved. Also it is not limited to certain types of $g(x)$.

First we put a linear second-order DE

$$
\begin{equation*}
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x) \tag{18}
\end{equation*}
$$

into the standard form by dividing by $a_{2}(x)$

$$
\begin{equation*}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x) \tag{19}
\end{equation*}
$$

We seek a solution of the form

$$
y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where $y_{1}$ and $y_{2}$ form a fundamental set of solutions on $I$ of the associated homogeneous form of (18). Using the product rule to differentiate $y_{p}$ twice gives

$$
\begin{aligned}
y_{p}^{\prime} & =u_{1} y_{1}^{\prime}+y_{1} u_{1}^{\prime}+u_{2} y_{2}^{\prime}+y_{2} u_{2}^{\prime} \\
y_{p}^{\prime \prime} & =u_{1} y_{1}^{\prime \prime}+y_{1}^{\prime} u_{1}^{\prime}+y_{1} u_{1}^{\prime \prime}+u_{1}^{\prime} y_{1}^{\prime}+u_{2} y_{2}^{\prime \prime}+y_{2}^{\prime} u_{2}^{\prime}+y_{2} u_{2}^{\prime \prime}+u_{2}^{\prime} y_{2}^{\prime}
\end{aligned}
$$

Substituting these into the standard form (19) yields

$$
\begin{align*}
y_{p}^{\prime \prime}+P(x) y_{p}^{\prime}+Q(x) y_{p}= & u_{1}\left[y_{1}^{\prime \prime}+P y_{1}^{\prime}+Q y_{1}\right]+u_{2}\left[y_{2}^{\prime \prime}+P y_{2}^{\prime}+Q y_{2}\right]  \tag{20}\\
& +y_{1} u_{1}^{\prime \prime}+u_{1}^{\prime} y_{1}^{\prime}+y_{2} u_{2}^{\prime \prime}+u_{2}^{\prime} y_{2}^{\prime}+P\left[y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right]+y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime} \\
= & \frac{\mathrm{d}}{\mathrm{~d} x}\left[y_{1} u_{1}^{\prime}\right]+\frac{\mathrm{d}}{\mathrm{~d} x}\left[y_{2} u_{2}^{\prime}\right]+P\left[y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right]+y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime} \\
= & \frac{\mathrm{d}}{\mathrm{~d} x}\left[y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right]+P\left[y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right]+y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=f(x)
\end{align*}
$$

We need two equations for two unknown functions $u_{1}$ and $u_{2}$. Assuming that these functions satisfy $y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0$, the equation above reduces to $y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=f(x)$. By Cramer's rule, the solution of the system

$$
\begin{aligned}
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime} & =0 \\
y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime} & =f(x)
\end{aligned}
$$

can be expressed in terms of determinants:

$$
\begin{equation*}
u_{1}^{\prime}=\frac{W_{1}}{W}=-\frac{y_{2} f(x)}{W} \quad \text { and } \quad u_{2}^{\prime}=\frac{W_{2}}{W}=\frac{y_{1} f(x)}{W} \tag{21}
\end{equation*}
$$

where

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|, \quad W_{1}=\left|\begin{array}{cc}
0 & y_{2} \\
f(x) & y_{2}^{\prime}
\end{array}\right|, \quad W_{2}=\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & f(x)
\end{array}\right|
$$

The functions $u_{1}$ and $u_{2}$ are found by integrating the result in (21). The determinant $W$ is the Wronskian of $y_{1}$ and $y_{2}$ whose linear independence ensures that $W \neq 0$.

Example: General solution using variation of parameters

$$
y^{\prime \prime}-4 y^{\prime}+4 y=(x+1) e^{2 x}
$$

From the auxiliary equation $m^{2}-4 m+4=(m-2)^{2}=0$ we have $y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}$. We identify $y_{1}=e^{2 x}$ and $y_{2}=x e^{2 x}$ and evaluate the Wronskian

$$
W=\left|\begin{array}{cc}
e^{2 x} & x e^{2 x} \\
2 e^{2 x} & 2 x e^{2 x}+e^{2 x}
\end{array}\right|=e^{4 x}
$$

The DE above is already in the standard form, so $f(x)=(x+1) e^{2 x}, W_{1}$ and $W_{2}$ are then

$$
W_{1}=\left|\begin{array}{cc}
0 & x e^{2 x} \\
(x+1) e^{2 x} & 2 x e^{2 x}+e^{2 x}
\end{array}\right|=-(x+1) x e^{4 x}, \quad W_{2}=\left|\begin{array}{cc}
e^{2 x} & 0 \\
2 e^{2 x} & (x+1) e^{2 x}
\end{array}\right|=(x+1) e^{4 x}
$$

and so

$$
u_{1}^{\prime}=-\frac{(x+1) x e^{4 x}}{e^{4 x}}=-x^{2}-x, \quad u_{2}^{\prime}=\frac{(x+1) e^{4 x}}{e^{4 x}}=x+1
$$

It follows that $u_{1}=-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}$ and $u_{2}=\frac{1}{2} x^{2}+x$, and hence

$$
y_{p}=\left(-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}\right) e^{2 x}+\left(\frac{1}{2} x^{2}+x\right) x e^{2 x}=\frac{1}{6} x^{3} e^{2 x}+\frac{1}{2} x^{2} e^{2 x}
$$

The general solution is then

$$
y=y_{c}+y_{p}=c_{1} e^{2 x}+c_{2} x e^{2 x}+\frac{1}{6} x^{3} e^{2 x}+\frac{1}{2} x^{2} e^{2 x}
$$

# Green's function methods <br> - initial value problems 

## $2^{\text {nd }}$-order ODEs

## Green's functions

Consider the linear second-order differential equation

$$
a_{2}(x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+a_{1}(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+a_{0}(x) y=g(x)
$$

In mathematical analysis of physical systems it is often desirable to express the response or output $y(x)$ subject to either initial conditions or boundary conditions directly in terms of the forcing function or input $g(x)$.

We will start by examining solutions of the initial value problem with the differential equation above in the standard form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)
$$

and we assume that the functions $P(x), Q(x)$ and $f(x)$ are continuous on some interval $I$.

## Initial value problems

The solution of the second-order initial value problem

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x), \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}
$$

can be expressed as the superposition of two solutions:
(i) the solution $y_{h}$ of the associated homogeneous differential equation with nonhomogeneous initial conditions

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0, \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}
$$

(ii) the solution $y_{p}$ of the nonhomogeneous differential equation with zero initial conditions, so called a rest solution

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x), \quad y\left(x_{0}\right)=0, \quad y^{\prime}\left(x_{0}\right)=0 .
$$

## Green's function

If $y_{1}$ and $y_{2}$ form a fundamental set of solutions on the interval $I$ of the associated homogeneous differential equation, then a particular solution of the non-homogeneous equation on the interval $I$ can be found by variation of parameters:

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where the functions $u_{1}(x)$ and $u_{2}(x)$ are determined from the equations

$$
u_{1}^{\prime}(x)=-\frac{y_{2}(x) f(x)}{W}, \quad u_{2}^{\prime}(x)=\frac{y_{1}(x) f(x)}{W}
$$

where the linear independence of $y_{1}(x)$ and $y_{2}(x)$ on the interval $I$ guarantees that the Wronskian $W \neq 0$ for all $x \in I$.

We can now integrate the derivatives $u_{1}^{\prime}(x)$ and $u_{2}^{\prime}(x)$ on the interval $\left[x_{0}, x\right]$ to get

$$
\begin{aligned}
y_{p}(x) & =y_{1}(x) \int_{x_{0}}^{x} \frac{-y_{2}(t) f(t)}{W(t)} d t+y_{2}(x) \int_{x_{0}}^{x} \frac{y_{1}(t) f(t)}{W(t)} d t \\
& =\int_{x_{0}}^{x} \frac{-y_{1}(x) y_{2}(t)}{W(t)} f(t) d t+\int_{x_{0}}^{x} \frac{y_{1}(t) y_{2}(x)}{W(t)} f(t) d t
\end{aligned}
$$

where

$$
W(t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right| .
$$

The two integrals

$$
y_{p}(x)=\int_{x_{0}}^{x} \frac{-y_{1}(x) y_{2}(t)}{W(t)} f(t) d t+\int_{x_{0}}^{x} \frac{y_{1}(t) y_{2}(x)}{W(t)} f(t) d t
$$

can be rewritten as a single integral

$$
y_{p}(x)=\int_{x_{0}}^{x} G(x, t) f(t) d t .
$$

where the function $G(x, t)$ is called the Green's function

$$
G(x, t)=\frac{y_{1}(t) y_{2}(x)-y_{1}(x) y_{2}(t)}{W(t)} .
$$

## Remarks:

The Green's function depends only on the fundamental solutions $y_{1}(x)$ and $y_{2}(x)$ of the associated homogeneous differential equation and not on the forcing function $f(x)$.

All linear second-order differential equations with the same left hand side but different forcing functions have the same Green's function.

We can call

$$
G(x, t)=\frac{y_{1}(t) y_{2}(x)-y_{1}(x) y_{2}(t)}{W(t)}
$$

the Green's function for the second-order differential operator

$$
L=D^{2}+P(x) D+Q(x) .
$$

## Example 1

Use the Green's function to find a particular solution of $y^{\prime \prime}-y=f(x)$.
The solutions of the associated homogeneous equation $y^{\prime \prime}-y=0$ are

$$
y_{1}(x)=e^{x}, \quad y_{2}(x)=e^{-x},
$$

and the Wronskian $W=-2$. It follows from the definition of the Green's function above that

$$
G(x, t)=\frac{e^{t} e^{-x}-e^{x} e^{-t}}{-2}=\frac{e^{x-t}-e^{-(x-t)}}{2}=\sinh (x-t) .
$$

The particular solution is then

$$
y_{p}(x)=\int_{x_{0}}^{x} \sinh (x-t) f(t) d t .
$$

## Example 2

Find the general solution of the following nonhomogeneous differential equations
(a) $y^{\prime \prime}-y=1 / x$,
(b) $y^{\prime \prime}-y=e^{2 x}$.

From the Example 1:
(i) both ODEs have the same complementary function $y_{c}=c_{1} e^{-x}+c_{2} e^{x}$, and
(ii) the Green's function for both equations is $G(x, t)=\sinh (x-t)$.

Case (a): $y^{\prime \prime}-y=1 / x$

With $f(x)=1 / x$ we get the particular solution

$$
y_{p}(x)=\int_{x_{0}}^{x} \sinh (x-t) f(t) d t=\int_{x_{0}}^{x} \frac{\sinh (x-t)}{t} d t
$$

and the general solution $y=y_{c}+y_{p}$ on any interval $\left[x_{0}, x\right]$ not containing the origin is

$$
y=c_{1} e^{-x}+c_{2} e^{x}+\int_{x_{0}}^{x} \frac{\sinh (x-t)}{t} d t .
$$

Case (b): With $x_{0}=0$ and $f(x)=e^{2 x}$ it follows from

$$
y=c_{1} e^{-x}+c_{2} e^{x}+\int_{x_{0}}^{x} \sinh (x-t) e^{2 t} d t .
$$

that the solution of this IVP is

$$
\begin{aligned}
y_{p}(x) & =\int_{0}^{x} \sinh (x-t) e^{2 t} d t=\int_{0}^{x} \frac{e^{x-t}-e^{-(x-t)}}{2} e^{2 t} d t \\
& =\frac{1}{2} e^{x} \int_{0}^{x} e^{t} d t-\frac{1}{2} e^{-x} \int_{0}^{x} e^{3 t} d t \\
& =\frac{1}{3} e^{2 x}-\frac{1}{2} e^{x}+\frac{1}{6} e^{-x}
\end{aligned}
$$

where we have held $x$ constant throughout the integration with respect to $t$.

Theorem: Solution of the IVP with nonhomogeneous ODE and zero initial conditions

The function $y_{p}(x)$ defined by

$$
y_{p}(x)=\int_{x_{0}}^{x} G(x, t) f(t) d t .
$$

is the solution of the initial value problem

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x), \quad y\left(x_{0}\right)=0, \quad y^{\prime}\left(x_{0}\right)=0 .
$$

## Proof:

By construction $y_{p}(x)$ satisfies the nonhomogeneous differential equation

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x) .
$$

$$
G(x, t)=\frac{y_{1}(t) y_{2}(x)-y_{1}(x) y_{2}(t)}{W(t)}
$$

Next, the definite integral has the property $\int_{a}^{a}=0$, so

$$
y_{p}\left(x_{0}\right)=\int_{x_{0}}^{x_{0}} G\left(x_{0}, t\right) f(t) d t=0
$$

To show that $y_{p}^{\prime}\left(x_{0}\right)=0$ we use the Leibniz formula for the derivative of an integral

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \int_{u(x)}^{v(x)} F(x, t) d t=F(x, v(x)) v^{\prime}(x)-F(x, u(x)) u^{\prime}(x)+\int_{u(x)}^{v(x)} \frac{\partial}{\partial x} F(x, t) d t
$$

to get

$$
y_{p}^{\prime}(x)=G(x, x) f(x)+\int_{x_{0}}^{x} \frac{y_{1}(t) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(t)}{W(t)} f(t) d t
$$

where the first term is zero, and hence

$$
y_{p}^{\prime}\left(x_{0}\right)=\int_{x_{0}}^{x_{0}} \frac{y_{1}(t) y_{2}^{\prime}\left(x_{0}\right)-y_{1}^{\prime}\left(x_{0}\right) y_{2}(t)}{W(t)} f(t) d t=0
$$

Example 3: Example 2 revisited
(a) $y^{\prime \prime}-y=1 / x, y(1)=0, y^{\prime}(1)=0$,
(b) $y^{\prime \prime}-y=e^{2 x}, y(0)=0, y^{\prime}(0)=0$,

Case (a): With $x_{0}=1$ and $f(x)=1 / x$ it follows from

$$
y=c_{1} e^{-x}+c_{2} e^{x}+\int_{x_{0}}^{x} \frac{\sinh (x-t)}{t} d t
$$

and the theorem that the solution of this IVP is

$$
y_{p}(x)=\int_{1}^{x} \frac{\sinh (x-t)}{t} d t
$$

where $[1, x], x>0$.

Case (b): With $x_{0}=0$ and $f(x)=e^{2 x}$ it follows from

$$
y=c_{1} e^{-x}+c_{2} e^{x}+\int_{x_{0}}^{x} \sinh (x-t) e^{2 t} d t .
$$

that the solution of this IVP is

$$
\begin{aligned}
y_{p}(x) & =\int_{0}^{x} \sinh (x-t) e^{2 t} d t=\int_{0}^{x} \frac{e^{x-t}-e^{-(x-t)}}{2} e^{2 t} d t \\
& =\frac{1}{2} e^{x} \int_{0}^{x} e^{t} d t-\frac{1}{2} e^{-x} \int_{0}^{x} e^{3 t} d t \\
& =\frac{1}{3} e^{2 x}-\frac{1}{2} e^{x}+\frac{1}{6} e^{-x}
\end{aligned}
$$

where we have held $x$ constant throughout the integration with respect to $t$.

## Example 4

Solve the initial value problem

$$
y^{\prime \prime}+4 y=x, \quad y(0)=0, y^{\prime}(0)=0 .
$$

We start with constructing the Green's function:

The two linearly independent solutions of

$$
y^{\prime \prime}+4 y=0
$$

are $y_{1}(x)=\cos 2 x$ and $y_{2}(x)=\sin 2 x$, and the Wronskian is $W=2$, so

$$
G(x, t)=\frac{\cos 2 t \sin 2 x-\cos 2 x \sin 2 t}{2}=\frac{1}{2} \sin 2(x-t) .
$$

Given the initial condition $x_{0}=0$, the solution of the initial value problem is

$$
y_{p}(x)=\frac{1}{2} \int_{0}^{x} t \sin 2(x-t) d t .
$$

To evaluate the integral, we first write

$$
y_{p}(x)=\frac{1}{2} \sin 2 x \int_{0}^{x} t \cos 2 t d t-\frac{1}{2} \cos 2 x \int_{0}^{x} t \sin 2 t d t .
$$

and integrate by parts:

$$
\begin{aligned}
y_{p}(x) & =\frac{1}{2} \sin 2 x\left[\frac{1}{2} t \sin 2 t+\frac{1}{4} \cos 2 t\right]_{0}^{x}-\frac{1}{2} \cos 2 x\left[-\frac{1}{2} t \cos 2 t+\frac{1}{4} \sin 2 t\right]_{0}^{x} \\
& =\frac{1}{4} x-\frac{1}{8} \sin 2 x .
\end{aligned}
$$

## Theorem

If $y_{h}$ is the solution of the initial value problem

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0, \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}
$$

and $y_{p}$ is the solution of the initial value problem

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x), \quad y\left(x_{0}\right)=0, \quad y^{\prime}\left(x_{0}\right)=0,
$$

on the interval I, then

$$
y=y_{h}+y_{p}
$$

is the solution of the initial value problem

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x), \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1} .
$$

Proof: Since $y_{h}$ is a linear combination of the fundamental solutions, it follows that $y=y_{h}+y_{p}$ is a solution of the nonhomogeneous differential equation.

Moreover, since $y_{h}$ satisfies the initial conditions in

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0, \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1},
$$

and $y_{p}$ satisfies the initial conditions in

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x), \quad y\left(x_{0}\right)=0, \quad y^{\prime}\left(x_{0}\right)=0,
$$

we have

$$
\begin{aligned}
y\left(x_{0}\right) & =y_{h}\left(x_{0}\right)+y_{p}\left(x_{0}\right)=y_{0}+0=y_{0} \\
y^{\prime}\left(x_{0}\right) & =y_{h}^{\prime}\left(x_{0}\right)+y_{p}^{\prime}\left(x_{0}\right)=y_{1}+0=y_{1} .
\end{aligned}
$$

We see that the response $y(x)=y_{h}(x)+y_{p}(x)$ described by the full initial value problem can be separated into response $y_{h}$ due to the nontrivial initial conditions $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}$ and the response $y_{p}$ due to the forcing function.

## Example 5

Solve the initial value problem

$$
y^{\prime \prime}+4 y=\sin 2 x, \quad y(0)=1, y^{\prime}(0)=-2 .
$$

We solve two initial value problems:
(i) $y^{\prime \prime}+4 y=0, y(0)=1, y^{\prime}(0)=-2$
by applying the initial conditions to the general solution $y(x)=c_{1} \cos 2 x+c_{2} \sin 2 x$ of the associated homogeneous differential equation, we find $c_{1}=1, c_{2}=-1$ and thus

$$
y_{h}(x)=\cos 2 x-\sin 2 x .
$$

(ii) $y^{\prime \prime}+4 y=\sin 2 x, y(0)=0, y^{\prime}(0)=0$

Since the I.h.s. of the ODE is the same as in Example 4, we know the Green's function:

$$
G(x, t)=\frac{1}{2} \sin 2(x-t) .
$$

With $f(t)=\sin 2 t$, the solution of this IVP (see Problem 2) is

$$
y_{p}(x)=\frac{1}{2} \int_{0}^{x} \sin 2(x-t) \sin 2 t d t .
$$

Using the trigonometric identity

$$
\sin A \sin B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]
$$

with $A=2(x-t)$ and $B=2 t$ :

$$
\begin{aligned}
y_{p}(x) & =\frac{1}{2} \int_{0}^{x} \sin 2(x-t) \sin 2 t d t \\
& =\frac{1}{4} \int_{0}^{x}[\cos (2 x-4 t)-\cos 2 x] d t \\
& =\frac{1}{4}\left[-\frac{1}{4} \sin (2 x-4 t)-t \cos 2 x\right]_{0}^{x} \\
& =\frac{1}{8} \sin 2 x-\frac{1}{4} x \cos 2 x .
\end{aligned}
$$

The full solution can now be written as

$$
y(x)=y_{h}(x)+y_{p}(x)=\cos 2 x-\sin 2 x+\left(\frac{1}{8} \sin 2 x-\frac{1}{4} x \cos 2 x\right)
$$

where the first two terms on the r.h.s. correspond to the response of the system due to the initial conditions $y(0)=0, y^{\prime}(0)=0$ and the last term to the response of the system to the forcing function or input $f(x)=\sin 2 x$.

By combining the similar terms this physical significance is lost

$$
y(x)=y_{h}(x)+y_{p}(x)=\cos 2 x-\frac{7}{8} \sin 2 x-\frac{1}{4} x \cos 2 x .
$$

The beauty of the solution written in the form

$$
y(x)=y_{h}(x)+y_{p}(x)=\cos 2 x-\sin 2 x+\frac{1}{2} \int_{0}^{x} \sin 2(x-t) \sin 2 t d t
$$

is that we can immediately write down the response of a system if the initial conditions remain the same but the forcing function is changed. For example, if the problem is changed to

$$
y^{\prime \prime}+4 y=x, \quad y(0)=1, y^{\prime}(0)=-2 .
$$

we replace $\sin 2 t$ in the integral by $t$ and the solution becomes

$$
\begin{aligned}
y(x) & =y_{h}(x)+y_{p}(x)=\cos 2 x-\sin 2 x+\frac{1}{2} \int_{0}^{x} t \sin 2(x-t) d t \\
& =\frac{1}{4} x+\cos 2 x-\frac{9}{8} \sin 2 x .
\end{aligned}
$$

Physically relevant example to Problem 5 is offered by undamped forced motion:
The initial value problem

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+\omega_{0}^{2} x=F_{0} \sin \omega t, \quad x(0)=0, \quad x^{\prime}(0)=0
$$

has the solution of the form

$$
x(t)=c_{1} \cos \omega_{0} t+c_{2} \sin \omega_{0} t+\frac{F_{0}}{\left(\omega_{0}^{2}-\omega^{2}\right)} \sin \omega t
$$

with the constants $c_{1}=0$ and $c_{2}=-\omega F_{0} / \omega_{0}\left(\omega_{0}^{2}-\omega^{2}\right)$ given by the initial conditions.
The solution of the initial value problem can be written as

$$
x(t)=\frac{F_{0}}{\omega_{0}\left(\omega_{0}^{2}-\omega^{2}\right)}\left(-\omega \sin \omega_{0} t+\omega_{0} \sin \omega t\right)
$$

## Example 6

Solve the initial value problem

$$
y^{\prime \prime}+4 y=f(x), \quad y(0)=1, y^{\prime}(0)=-2,
$$

where the forcing function $f$ is piecewise defined:

$$
f(x)= \begin{cases}0, & x<0 \\ \sin 2 x, & 0 \leq x \leq 2 \pi \\ 0, & x>2 \pi\end{cases}
$$

## Solution:

Recall the solution of Example 5 and replace $\sin 2 t$ by the forcing function $f(t)$ :

$$
y(x)=\cos 2 x-\sin 2 x+\frac{1}{2} \int_{0}^{x} \sin 2(x-t) f(t) d t .
$$

Since $f(x)$ is piecewise defined on three intervals, we have to consider the evaluation of the definite integral accordingly:
(i) $x<0$

$$
y_{p}(x)=\frac{1}{2} \int_{0}^{x} \sin 2(x-t) 0 d t=0 .
$$

(ii) $0 \leq x \leq 2 \pi$

$$
\begin{aligned}
y_{p}(x) & =\frac{1}{2} \int_{0}^{x} \sin 2(x-t) \sin 2 t d t \\
& =\frac{1}{8} \sin 2 x-\frac{1}{4} x \cos 2 x,
\end{aligned}
$$

where we used the integration detailed in Example 5.
(iii) $x>2 \pi$

$$
\begin{aligned}
y_{p}(x) & =\frac{1}{2} \int_{0}^{2 \pi} \sin 2(x-t) \sin 2 t d t+\frac{1}{2} \int_{2 \pi}^{x} \sin 2(x-t) 0 d t \\
& =\frac{1}{2} \int_{0}^{2 \pi} \sin 2(x-t) \sin 2 t d t \\
& =\frac{1}{4}\left[-\frac{1}{4} \sin (2 x-4 t)-t \cos 2 x\right]_{0}^{2 \pi} \\
& =-\frac{1}{16} \sin (2 x-8 \pi)-\frac{1}{2} \pi \cos 2 x+\frac{1}{16} \sin 2 x \\
& =-\frac{1}{2} \pi \cos 2 x .
\end{aligned}
$$

Consequently, $y_{p}(x)$ is

$$
y_{p}(x)= \begin{cases}0, & x<0 \\ \frac{1}{8} \sin 2 x-\frac{1}{4} x \cos 2 x, & 0 \leq x \leq 2 \pi \\ -\frac{1}{2} \pi \cos 2 x, & x>2 \pi .\end{cases}
$$

and the complete solution is

$$
y_{p}(x)=y_{h}(x)+y_{p}(x)= \begin{cases}\cos 2 x-\sin 2 x, & x<0 \\ \left(1-\frac{1}{4} x\right) \cos 2 x-\frac{7}{8} \sin 2 x, & 0 \leq x \leq 2 \pi \\ \left(1-\frac{1}{2} \pi\right) \cos 2 x-\sin 2 x, & x>2 \pi\end{cases}
$$



