HIGHER ORDER DIFFERENTIAL EQUATIONS

Theory of linear equations

Initial-value and boundary-value problem

nth-order initial value problem is

n n—1
Solve: a,,(,x)@ E a"_lu)dx”‘l + ... + a|(-x)a + ap(x)y = g(x)
Subject to: y(xg) = vo. ¥ (x0) = ¥y1. - - . ,_\*(”_” = Vp—-1 (1)

we seek a function defined on an interval I, containing x, that satisfies the DE and
the n initial conditions above.



Existence and uniqueness
Theorem: Existence of a unique solution

Let any(x), a,—1(x), ... , aj(x), apg(x) and g(x) be continuous on an interval 7 and let
an(x) # 0 for every x in this interval. If x = xp in any point in this interval, then a
solution y(x) of the initial value problem (1) exists on the interval and is unique.

Example: Unique solution of an IVP
3 +5y =y +Ty=0, y1)=0,y(1)=0,y"(1)=0

has the ftrivial solution y = 0. Since the DE is linear with constant coefficients, all
the conditions of the theorem are fulfilled, and thus y = 0 is the only solution on any
interval containing x = 1.



Boundary-value problem

consists of solving a linear DE of order two or greater in which the dependent variable
y or its derivatives are specified at different points. Example: a two-point BVP

Solve: 02+ a2 + aptoly = 5
olve: az(x a2 ap(x dr apglx)y = g(x
Subject to boundary conditions: y(xp) = vo, v(b) =y (2)

solutions of the DE

2

;




A BVP can have many, one or no solutions: /2,0)

The DE x”" +16x = 0 has the two-parameter family of solutions x = ¢| cos 41+ ¢ sin 41.
Consider the BVPs:

(1) x(0) = 0, and x(7/2) = 0 = ¢ = 0 and the solution satisfies the DE for any value
of ¢3, thus the solution of this BVP is the one-parameter family x = ¢; sin4.

(2) x(0) =0, and x(n/8) = 0 = ¢; = 0 and ¢ = 0, so the only solution to this BVP is
x = 0.

(3) x(0) = 0 = ¢; = 0 again but the second condition x(r/2) = 1 leads to the
contradiction: 1 = ¢ sin2xr = ¢7.0 = 0.



Method of Variation of Parameters

2nd_order ODEs



The method of variation of parameters

Advantage: the method always yields a particular solution y,, provided the associ-
ated homogeneous equation can be solved. Also it is not limited to certain types of
g(x).

First we put a linear second-order DE

ax(x)y” + ay(x)y" + ap(x)y = g(x) (18)

into the standard form by dividing by a(x)

Y+ Py + Q(x)y = f(x) (19)



We seek a solution of the form

yp = up(x)y(x) + uza(x)ya(x)

where y; and y; form a fundamental set of solutions on 7 of the associated homoge-
neous form of (18). Using the product rule to differentiate y,, twice gives

.\-';) = ul.\"l + }‘lu‘i + “2‘),»‘,2 + ).2113

R - R 'f ! , r ! 'l 'II 'l ! , r ! 'I
Substituting these into the standard form (19) yields
Yy + P, + Q)yp = up [y + Py] + Qyi| + uz[y5 + Py + Oy (20)
+y(uy + uy] + yauy +usyy + P [..\"1"’1 + _vgu'z] + YU + yyul

d d
= 5 [ylu‘il + i [_vzugl + P [}’1“’1 + }"2“;1 + 3'1 u’l + _v’zug
X X < = <

d -
= d_r ["‘"l“,l + }.’2"5] -+ P [}.’lufl + }.’zuél + ...‘"ll u’l + }.éué — f(_X)



We need two equations for two unknown functions «; and u;. Assuming that these
functions satisfy y u + y,u5 = 0, the equation above reduces to yju} + yju5 = f(x).
By Cramer’s rule, the solution of the system

yiuy+yuy = 0

Yiup +ypuy = fx)

can be expressed in terms of determinants:

Wi ya.f(x) Wa _yif(x)
' = = == and ! = - = - 21
1y W LTW T Tw 1)
where
_| Y » | 0 » |y 0
W=l M e v MY s |

The functions «; and u; are found by integrating the result in (21). The determinant
W is the Wronskian of y; and y, whose linear independence ensures that W # 0.



Example: General solution using variation of parameters

2
v =4y +4y = (x+ 1)e”*

From the auxiliary equation m? — 4m + 4 = (m — 2)* = 0 we have y. = c;e>* + coxe~.
y €eq ; 1 2

' . Ty - .
We identify y; = ¢** and y; = xe¢** and evaluate the Wronskian

)
82.\’ xeX

2x 2%, 2
2e“* 2xe“* + e“*

4x

W = =ée

The DE above is already in the standard form, so f(x) = (x + 1)e2*, W, and W> are
then

0 xe2*

1= (x + ])82"' 2xe2X + 2%

7
et 0

2¢2% (x+ 1)e** - (x+l)e4't

= —(x+1)xe**, Wy =




and so

x+ e
(Y—)B_x-'_l

-
=
|

[

[
=
b~
[

[

It follows that u; = —%d 3 _ %xz and u; :12x2 + x, and hence

1 1 -1 i 1
Yp = (—§x3 - ix?') e + (2x2 + r) xe* 6 Vet 4 = 5 —x2e**
The general solution is then

, 1 1 s o,
y = Yetyp=cret + coxe”™ + Ex3ez" + Exze“"



Green’s function methods
- initial value problems

2nd_order ODEs



Green’s functions

Consider the linear second-order differential equation
d? d
ax(x)~= + a1 (D) + ag(x)y = g(x)
dx dx

In mathematical analysis of physical systems it is often desirable to express the re-
sponse or output y(x) subject to either initial conditions or boundary conditions di-
rectly in terms of the forcing function or input g(x).

We will start by examining solutions of the initial value problem with the differential
equation above in the standard form
Y+ Py + Q(x0)y = f(x)

and we assume that the functions P(x), Q(x) and f(x) are continuous on some inter-
val I.



Initial value problems

The solution of the second-order initial value problem

Y+ P(x)y + Q(x)y = f(x),  y(x0) =y0, ¥ (x0) =1

can be expressed as the superposition of two solutions:
(i) the solution y; of the associated homogeneous differential equation with non-
homogeneous initial conditions

Y+ Px)y +Q0)y=0, y(xp)=yo ¥(x0)=y1,

(ii) the solution y, of the nonhomogeneous differential equation with zero initial
conditions, so called a rest solution

Y+ PO)Y + Q(x)y = f(x),  y(xg) =0, y'(xg) =0.



Green’s function

If y; and y, form a fundamental set of solutions on the interval I of the associated ho-
mogeneous differential equation, then a particular solution of the non-homogeneous
equation on the interval I can be found by variation of parameters:

yp(x) = up(x)y1(x) + up(x)y2(x)
where the functions u(x) and u(x) are determined from the equations
y2(x) f(x) y1(x)f(x)
W W
where the linear independence of y{(x) and y,(x) on the interval I guarantees that
the Wronskian W = 0 for all x € 1.

”/1 (x) = - u’2(x) =



We can now integrate the derivatives u’l (x) and u’z(x) on the interval [xg, x] to get

N e
X0 X0

W() W(r)

I % 1€9)510) T y1(@)ya(x)
= fx O W f(Hdt + fx 0 W) f(ndt,

where

y1(@) y2()

WO=1 Yo Yo




The two integrals

(o) X y1(D)ya(x)
yp(x) = fxo W f() dt + j;o TWa) f@) dt

can be rewritten as a single integral

yp(x) = f G(x,1)f(t) dt.

0

where the function G(x, ¢) is called the Green’s function

G(x,1) = Y1)y 2(’2‘/—0})’ 1(X)y2(t).



Remarks:

The Green’s function depends only on the fundamental solutions y;(x) and y,(x) of
the associated homogeneous differential equation and not on the forcing function

J(X).

All linear second-order differential equations with the same left hand side but different
forcing functions have the same Green’s function.

We can call
_ Y1®0y2(x) = y1(x)y2(®)
W(t)
the Green’s function for the second-order differential operator

G(x, 1)

L = D?+ P(x)D + Q(x).



Example 1
Use the Green’s function to find a particular solution of y’” —y = f(x).

The solutions of the associated homogeneous equation y”/ —y = 0 are

yix) =e',  yx)=e 7,

and the Wronskian W = —-2. It follows from the definition of the Green’s function

above that

To=X _ pXp=l X1 _ e—(x—t)

Glx,1) = =5 — = > — sinh(x — ).

The particular solution is then

yp(x) = f " sinh(x — 1) f(¢)dt.

0



Example 2

Find the general solution of the following nonhomogeneous differential equations

(@ y'-y=1/x (b) ¥ —y=e

From the Example 1:
(i) both ODEs have the same complementary function y. = cje™ + ¢pe*, and

(ii) the Green’s function for both equations is G(x, t) = sinh(x — 1).



Case(a):y' —-y=1/x

With f(x) = 1/x we get the particular solution

yp(x) = f ’ sinh(x — 1) f(H)dt = f “sinh(x -1

0 X0 !

and the general solution y = y. +y, on any interval [xg, x] not containing the origin is

x .
_ sinh(x — ¢
y=cie " +cre* + f (—)dt.
X0 !



Case (b): With xg = 0 and f(x) = ¥ it follows from

X
y=cie *+ et + f sinh(x — 1) e dt.
X0

that the solution of this IVP is

X x x—t _ _—(x—1)
yp(x) = f sinh(x — £) e dt = f € ¢ 2 g
0 0 2

1 X 1 X
= —exf etdt——e_xf e dt
2 0 2 0

1 1 1
§€2x — Eex + ge_x

where we have held x constant throughout the integration with respect to ¢.



Theorem: Solution of the IVP with nonhomogeneous ODE and zero initial conditions
The function y,(x) defined by

yp(x) = f G(x, 1) f(1) dt.

0
is the solution of the initial value problem
Y/ + Py + Qx)y = f(x),  y(x0) =0, y'(xp) = 0.

Proof:
By construction y,(x) satisfies the nonhomogeneous differential equation

Y+ P(x)y + Q(x)y = f(x).



_ y1@y2(x) = y1(xX)y2(2)
B W ()

G(x, 1)

Next, the definite integral has the property faa =0, so

X0
yp(xp) = f G(xp, ) f(t)dt =0

0

To show that y;)(xg) = 0 we use the Leibniz formula for the derivative of an integral
v(x) py

F(x,t) dt = F(x,v(x)) V' (x) = F(x,u(x)) u'(x) + f a—F(x, 1) dt

X

a u(x) u(x)
to get

d e

Y30 = Glx 0 f(6) + fx y1(0)yy(x) _yl(X)yZ(t)f(t) P

%o W(r)
where the first term is zero, and hence

, X0 y1(6)y5(x0) — ¥ (x0)y2(t)
oo = [ —

f(t)dt=0.
0



Example 3: Example 2 revisited

(@ ' —y=1/x, y(1)=0,y'(1) =0, (b) ¥’ —y=e*, y0)=0,)'(0)=0,

Case (a): With xo = 1 and f(x) = 1/x it follows from

.
_ sinh(x — ¢

y=cye x+czex+f ¥dt

X0 !

and the theorem that the solution of this IVP is
Y sinh(x — 1)
= [0,
1 t
where [1, x], x > 0.



Case (b): With xg = 0 and f(x) = ¥ it follows from

X
y=cie *+ et + f sinh(x — 1) e dt.
X0

that the solution of this IVP is

X x x—t _ _—(x—1)
yp(x) = f sinh(x — £) e dt = f € ¢ 2 g
0 0 2

1 X 1 X
= —exf etdt——e_xf e dt
2 0 2 0

1 1 1
§€2x — Eex + ge_x

where we have held x constant throughout the integration with respect to ¢.



Example 4

Solve the initial value problem
Y’ +4y=1x y0)=0,y(0)=0.

We start with constructing the Green’s function:

The two linearly independent solutions of
v/ +4y=0
are yj(x) = cos2x and y>(x) = sin2x, and the Wronskian is W = 2, so

Gx.1) = CcOS 2t sin 2x ; Ccos 2x sin 2t _ % sin2(x — 1)




Given the initial condition xy = 0, the solution of the initial value problem is

1 X
yp(x) = Ej(; tsin2(x —t) dt.

To evaluate the integral, we first write

1 X 1 x
yp(x) = = sin 2xf tcos 2t dt — = cos 2xf tsin 2t dt.

and integrate by parts:

1 |

1 1 1 1 X
—sin2x [51‘ sin 2t + 1 COS 2t] ~3 Ccos 2x [_Et cos 2t + 1 sin 2t

Yp(x)

0 0

11
= —x——sin2x.
4)6 SN 2X



Theorem

If y;, is the solution of the initial value problem

Y+ P(x)y + Qx)y =0,  y(xp) =yo, Y (x0) =1,

and y, is the solution of the initial value problem

Y+ Py + Q)y = f(x),  y(xp) =0, y'(x9) =0,

on the interval |, then

Y=Yn+t)Yp

is the solution of the initial value problem

Y+ Py + Q)y = f(x),  y(xo) =y, ¥ (x0) =y1.



Proof: Since yj, is a linear combination of the fundamental solutions, it follows that
y = yp + yp is a solution of the nonhomogeneous differential equation.

Moreover, since yj;, satisfies the initial conditions in

Y+ P(x)y" + Q(x)y =0,  y(x0) =0, ¥'(x0) = y1,
and y, satisfies the initial conditions in

Y+ P(x)y" + Q(x)y = f(x), y(x9) =0, y'(xg) =0,
we have

y(xo) = yu(x0) +yp(xo) =yo+0=yp

Y(x0) = y,(x0) +yp(x0) = y1 +0 = yi.
We see that the response y(x) = yu(x) + yp(x) described by the full initial value
problem can be separated into response y; due to the nontrivial initial conditions
y(xp) = y0,¥'(xp) = y1 and the response y, due to the forcing function.



Example 5
Solve the initial value problem
Y +4y =sin2x, y(0)=1,y(0) = —2.
We solve two initial value problems:
(i) " +4y=0,90) = 1,y’(0) = -2

by applying the initial conditions to the general solution y(x) = ¢ cos 2x + ¢, sin 2x of
the associated homogeneous differential equation, we find ¢y = 1,¢cp = —1 and thus

vp(x) = cos2x — sin 2x.



(i) " + 4y = sin 2x, y(0) = 0,y’(0) = 0

Since the l.h.s. of the ODE is the same as in Example 4, we know the Green’s
function:

|
G(x,1) = 5 sin 2(x — 1).

With f(#) = sin 2¢, the solution of this IVP (see Problem 2) is

1 X
yp(x) = Ef sin 2(x — £) sin 2t dt.
0



Using the trigonometric identity

1
sinAsinB = 7 [cos(A — B) + cos(A + B)]

with A = 2(x — t) and B = 2t:

1

X
yp(x) = 5 f sin 2(x — t) sin 2t dt
0

1 X
= - f [cos(2x — 4t) — cos 2x] dt
4 Jo
11, *
= ——sin(2x — 4t) — tcos 2x
4 0

4
1 1
§ sin2x — —x cos 2x.



The full solution can now be written as

1 1
y(x) = yp(x) + yp(x) = cos2x —sin2x + 3 sin 2x — Zx cos 2x

where the first two terms on the r.h.s. correspond to the response of the system due
to the initial conditions y(0) = 0,y’(0) = 0 and the last term to the response of the
system to the forcing function or input f(x) = sin 2x.

By combining the similar terms this physical significance is lost

1
y(x) = yp(x) + yp(x) = cos2x— 3 sin 2x — Zx Cos 2x.



The beauty of the solution written in the form

1 X
yx) = yp(x) +yp(x) = cos2x —sin2x + 5 f sin 2(x — t) sin 2t dt
0

is that we can immediately write down the response of a system if the initial con-
ditions remain the same but the forcing function is changed. For example, if the
problem is changed to

Y/ +4y=x, y0)=1,y'(0) =-2.

we replace sin 2t in the integral by ¢ and the solution becomes

1 X
y(x) = yp(x) +yp(x) = cos2x —sin2x + 5 f tsin2(x —t) dt
0

1
= Zx + COS2x — 3 sin 2x.



Physically relevant example to Problem 5 is offered by undamped forced motion:

The initial value problem

d2x 2 . ’
@ twyx = Fo sin wt, x(0)=0, x'(0)=0

has the solution of the form

: F :
x(t) = cq1coswpt+ cpsinwpt + — 0 _dinowr.

(- o)

with the constants ¢; = 0 and ¢, = —wFy/wg (w(z) - wz) given by the initial conditions.

The solution of the initial value problem can be written as

Fo : :
x(t) = > (—w sin wyt + wq sin wt) .

wo (g - )




Example 6

Solve the initial value problem

Y +4dy = f(x), y(0)=1,y(0) = -2,
where the forcing function f is piecewise defined:

0, x<0
f(x) =4 sin2x, 0<x<2nm
0, x> 2.

Solution:
Recall the solution of Example 5 and replace sin 2¢ by the forcing function f(7):

1 X
y(x) = cos2x—sin2x + 5 f sin2(x — 1) f(¢) dt.
0



Since f(x) is piecewise defined on three intervals, we have to consider the evaluation
of the definite integral accordingly:
(i)x<O

1 X
yp(x) = Ef sin2(x —1)0 dr = 0.
0

(i0<x<2n

1 X
yp(x) = 5 f sin 2(x — t) sin 2t dt
0

1 1
= 3 sin 2x — Zx cos 2x,

where we used the integration detailed in Example 5.



(iil) x > 27

)’p(x)

1 27 1 X
— f sin2(x — ) sin 2t dt + — f sin2(x — 1)0 dt
2 Jo 2 Jon

1 27
5 f sin 2(x — t) sin 2t dt
0

1 1 2
1 [_Z sin(2x — 4t) — tcos 2x]o

1
BT sin(2x — 8m) — 571' cos 2x + 16 sin 2x

1
—— 2x.
27rcos X



Consequently, y,(x) is
0,

)’p(x) =9 %

and the complete solution is

Yp(x) = yp(x) + yp(x) =

sin 2x —

L(1-

}Lx CosS 2x,

—%7‘[ CoS 2x,

coS 2x — sin 2x,

}Lx) Ccos2x —

x<0
0<x<2n
x> 2.

x<0
7

gsin2x, 0<x<2n

(1 — %7‘[) cos2x —sin2x, x> 2m.



