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1. (a) Use the transformation method to construct a recipe for obtaining pseudo-random num-
bers with probability distribution

p(y) =
3y2

y3 + 1
, y ∈ [0, 3

√
e− 1 ]. (1.1)

You may assume a generator of uniform pseudo-random numbers between 0 and 1 is given

[11 marks]

(b) List the main steps of the rejection method for generating a pseudo-random number
distributed according to f(x), given a constant M ∈ R and generators for uniform pseudo-
random numbers between 0 and 1 and pseudo-random numbers distributed according to
g(x) such that f(x) < Mg(x), for all x ∈ R. Prove that the rejection method produces a
variable Y distributed according to f(x).

[15 marks]

(c) If xi are N independent uniformly distributed random points within a d-dimensional
volume V , and

IMC =
V

N

N∑
i=1

f(xi), (1.2)

show that the expectation value of IMC is equal to the integral of the function f over the
volume V ,

〈IMC〉 =

∫
V

f(x)dx. (1.3)

Explain how this relation can be used to compute the integral I using Monte Carlo inte-
gration.

[12 marks]

(d) Assuming you have a random number generator to generate pseudo-random numbers x
with the following distribution:

p(x) = e−x, x ∈ [0,∞). (1.4)

explain how you would use Monte Carlo integration with importance sampling to compute
the following integral:

I =

∫ ∞
0

4xe(4−x)dx (1.5)

[12 marks]
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2. (a) Using symmetric first and second derivatives, write down the discretised version of the
equation

A
∂2φ

∂x2
+B

∂2φ

∂y2
+ C

∂φ

∂x
+D

∂φ

∂y
= ρ(x, y), 0 ≤ x, y ≤ L, (2.1)

where A,B,C and D are known constants and ρ(x, y) is a known function of x and y, on
a square symmetric grid of N ×N points with zero Dirichlet boundary conditions.

[13 marks]

(b) Explain how the resulting equation can be written as a matrix equation, MΦ = B, where
M is a sparse N2 × N2 matrix and B is a known vector of length N2. Write down
expressions for M and B, taking the boundary conditions into account.

[10 marks]

(c) Write down the Forward Time Centred Space discretisation scheme for the equation below,
assuming equal lattice spacings δx = δy = a in both space directions, and a spacing ∆t
in the time direction.

∂φ

∂t
=
∂2φ

∂x2
+
∂2φ

∂y2
− ρ(x, y), (2.2)

[12 marks]

(d) Using the von Neumann stability criterion for this scheme, ∆t ≤ a2/4, derive the Jacobi
method for solving the Poisson equation, and explain how it may be modified to obtain
the Gauss-Seidel method.

[10 marks]

(e) Assuming that each iteration reduces the difference between your estimate and the true
solution by a factor ρs (called the spectral radius), find how many iterations are required
to reduce this difference by a factor 10−p.

For the Poisson equation on a square N ×N grid with homogeneous Dirichlet boundary
conditions, the spectral radii for the Jacobi and Gauss-Seidel methods are given by

Jacobi: ρJ = cos(
π

N
), Gauss-Seidel: ρGS = cos2(

π

N
). (2.3)

Use this to show that the Gauss-Seidel method converges twice as fast as the Jacobi
method, and that the number of iterations required for both to converge increases as N2

in the limit of large N.

[5 marks]
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Solutions: Question 1

(a) We want to find a function f such that, given X is uniformly distributed between 0 and 1,
Y = f(X) is distributed according to

p(y) =
3y2

y3 + 1
, (0.4)

We know that

Probability X ∈ [a, b] = Probability Y ∈ [f(a), f(b)], (0.5)

=⇒
∫ b

a

PX(x)dx =

∫ f(b)

f(a)

PY (y)dy, (0.6)

=⇒
∫ x

0

dx′ =

∫ y

0

3y′2

y′3 + 1
dy′, (0.7)

=⇒ x =

∫ y3+1

1

dα

α
= ln(y3 + 1) (0.8)

Inverting this gives

y = 3
√
ex − 1. (0.9)

Hence, generating a uniformly distributed number X between 0 and 1 and applying the function
f(x) = 3

√
ex − 1 produces a number Y which is distributed according to (0.4).

[11 marks]

(b) Given a constant M ∈ R, the following three steps will produce a random number Y distributed
according to f(x) given generators for producing random numbers u distributed uniformly
between 0 and 1 and X distributed according to g(x).

(a) Generate a random number X according to f(x).

(b) Generate a uniformly distributed random number u between 0 and 1.

(c) If u < f(X)/Mg(X), accept Y = X. Other wise reject X and execute these three steps
again.

To prove Y is distributed according to f(x), we first show that the probability of Y being less
than x is given by

P (Y < x) =

∫ x

−∞
f(x̃)dx̃. (0.10)
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We note, for Y to be less than x, two things must be true. Firstly, the random number u must
be less than f(x)/Mg(x). Then, provided that’s true, X must be less than x. Hence, we have

P (Y < x) = P (X < x|u < f(x)/Mg(x)), (0.11)

=
P (X < x, u < f(x)/Mg(x))

u < f(x)/Mg(x)
. (0.12)

We now note, that since X and u are independent random variables, the tuple (X, u) is dis-
tributed in the plane according to the product of distributions for X and u.

(X, u) ∼ P (x, y) = g(x)P
[0,1]

uni(y). (0.13)

Rewriting the probabilities appearing in (0.12) as integrals of the above distribution yields

P (Y < x) =

∫ x
−∞

(∫ f(x̃)/Mg(x̃)

0
g(x̃)du

)
dx̃∫ +∞

−∞

(∫ f(x̃)/Mg(x̃)

0
g(x̃)du

)
dx̃

(0.14)

=

∫ x
−∞ [f(x̃)/Mg(x̃)] g(x̃)dx̃∫ +∞
−∞ [f(x̃)/Mg(x̃)] g(x̃)dx̃

(0.15)

=

∫ x
−∞ f(x̃)dx̃∫ +∞
−∞ f(x̃)dx̃

(0.16)

=

∫ x

−∞
f(x̃)dx̃ (0.17)

The probability density of Y is given by the derivative of its cumulative distribution. So the
distribution of Y must be

PY (y) =
d

dx

(∫ x

−∞
f(x̃)dx̃

) ∣∣∣
x=y

= f(y), (0.18)

proving that Y is distributed according to f(x).

[15 marks]

(c) If X is uniformly distributed inside the d-dimensional volume V , then the expectation value of
the quantity f(X) is
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〈f〉 =

∫
V

f(x)P V
uni(x)dx =

∫
V

f(x)

V
dx. (0.19)

Hence the expectation value of IMC is

〈IMC〉 =
V

N

N∑
i=1

〈f〉 =
V

N
(N〈f〉) , (0.20)

= V

∫
V

f(x)

V
dx =

∫
V

f(x)dx. (0.21)

For the first equality we used the fact that the xis are independent. Hence the expectation
value of IMC is the integral of f over the region V .

[12 marks]

(d) Rewritting the integrand yields

I =

∫ ∞
0

4xe(4−x)dx (0.22)

= 4e4
∫ ∞
0

xe−xdx (0.23)

Hence, to compute I using Monte Carlo integration with importance sampling one can generate
N pseudo-random numbers xi distributed under p(x) and compute

I =
4e4

N

N∑
i=1

x (0.24)

[12 marks]

Solutions: Question 2

(a) The symmetric finite difference equation for the first derivative of a function f is

f ′(x) =
f(x+ a)− f(x− a)

2a
. (0.25)

The symmetric finite difference equation for the second derivative of a function f is

f ′′(x) =
f(x+ a)− 2f(x) + f(x− a)

a2
. (0.26)
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We discretise the defined square region of the x, y-plane into a symmetric (N + 2) × (N + 2)
grid, with lattice spacing a = L

N+1
. For a function φ(x, y) on the interior points of the lattice

we write

φ(x, y) = φ(ia, ja) = φi,j, (0.27)

where i, j = 1 · · ·N . The first and second derivatives, at interior points of the lattice, are then
given by

∂φ

∂x
(x, y) =

φi+1,j − φi−1,j
2a

, (0.28)

∂φ

∂x
(x, y) =

φi,j+1 − φi,j−1
2a

, (0.29)

∂2φ

∂x2
(x, y) =

φi+1,j − 2φi,j + φi−1,j
a2

, (0.30)

∂2φ

∂y2
(x, y) =

φi,j+1 − 2φi,j + φi,j−1
a2

. (0.31)

Substituting these into the differential equation yields

ρ(x, y) = A
∂2φ

∂x2
+B

∂2φ

∂y2
+ C

∂φ

∂x
+D

∂φ

∂y
, (0.32)

= A
φi+1,j − 2φi,j + φi−1,j

a2
+B

φi,j+1 − 2φi,j + φi,j−1
a2

(0.33)

+ C
φi+1,j − φi−1,j

2a
+D

φi,j+1 − φi,j−1
2a

, (0.34)

=
1

a2

[(
A+

Ca

2

)
φi+1,j +

(
A− Ca

2

)
φi−1,j (0.35)

+

(
B +

Da

2

)
φi,j+1 +

(
B − Da

2

)
φi,j−1 − 4φi,j

]
(0.36)

[13 marks]

(b) We first define ρ̃i,j = a2ρ(x, y) so we can write

ρ̃i,j =

(
A+

Ca

2

)
φi+1,j +

(
A− Ca

2

)
φi−1,j (0.37)

+

(
B +

Da

2

)
φi,j+1 +

(
B − Da

2

)
φi,j−1 − 4φi,j. (0.38)
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To write this as a matrix equation we number the sites of the N × N lattice 1 to N2. The
number we assign to the site (i, j) is n = i + Nj. Then we can list the values of φi,j and ρ̃i,j,
from 1 to N2, in column vectors Φ and B respectively. The above equation then turns into the
matrix equation MΦ = B, where M is a N2 ×N2 matrix whose components are given by

Mm,n =

(
A+

Ca

2

)
δm,n+1 +

(
A− Ca

2

)
δm,n−1 (0.39)

+

(
B +

Da

2

)
δm,n+N +

(
B − Da

2

)
δm,n−N − 4δm,n (0.40)

and the vector B is given by

Bn = ρ̃n = ρ̃i,j, (0.41)

where n = i+Nj.

Equations involving boundary terms, in the set of linear equations MΦ = B, are treated
differently since φ0,j = φN+1,j = φi,0 = φi,N+1 = 0 (zero Dirichlet boundary conditions). This
amounts to terms appearing in 0.40 being set to zero for certain values of m (certain row
equations). Namely, the following terms in 0.40 are set to zero, (here i(m) and j(m) are the
original indices.)

When i(m) = 1, δm,n−1 = 0,

When i(m) = N, δm,n+1 = 0,

When j(m) = 1, δm,n−N = 0,

When j(m) = N, δm,n+N = 0.

In general, to implement Dirichlet boundary conditions, one must subtract the boundary values
from ρ̃n appropriately to form the vector B. However, since we want to implement zero Dirichlet
boundary conditions, this amounts to subtracting zero, leaving the equation 0.41 unaltered.

[10 marks]

(c) If we use a lattice with equal lattice spacings δx = δy = a in both space directions, and a
spacing ∆t in the time direction, the Forward Time Centred Space discretisation scheme for
this equation is the following finite difference equation.
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∂φ

∂t
=
∂2φ

∂x2
+
∂2φ

∂y2
− ρ(x, y), (0.42)

φn+1
i,j − φni,j

∆t
=
φni+1,j − 2φni,j + φni−1,j

a2
+
φni,j+1 − 2φni,j + φni,j−1

a2
− ρi,j (0.43)

φn+1
i,j =

(
1− 4∆t

a2

)
φni,j +

∆t

a2
(
φni+1,j + φni−1,j + φni,j+1 + φni,j−1

)
−∆tρi,j (0.44)

[12 marks]

(d) The von Neumann stability criterion for this scheme is ∆t ≤ a2/4. The Jacobi method for solv-
ing the Poisson equation is to use the largest possible time step size ∆t = a2/4. This amounts
to iterating the following equation to evolve an arbitrary initial state φ until it converges to a
stationary state.

φn+1
i,j =

1

4

(
φni+1,j + φni−1,j + φni,j+1 + φni,j−1

)
− a2

4
ρi,j. (0.45)

The above procedure can be modified to obtain the GaussSeidel method by using values of
φ(n + 1) that have already been computed to calculate each φn+1

i,j . This amounts to using the
following equation

φn+1
i,j =

1

4

(
φni+1,j + φn+1

i−1,j + φni,j+1 + φn+1
i,j−1

)
− a2

4
ρi,j. (0.46)

[10 marks]

(e) Assuming that each iteration reduces the difference between the estimate and the true solution
by a factor ρs, the number of iterations n required to reduce this difference by a factor 10−p is
given by

ρns = 10−p, (0.47)

=⇒ n ln(ρs) = −p ln(10), (0.48)

=⇒ n =
−p ln(10)

ln(ρs)
. (0.49)

For the Jacobi method we have ρs = ρJ = cos( π
N

). So the number of iterations of the Jacobi
method needed to reduce the difference by a factor of 10−p is
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nJ =
−p ln(10)

ln(ρJ)
=
−p ln(10)

ln(cos( π
N

))
. (0.50)

For the GaussSeidel method we have ρs = ρGS = cos2( π
N

). So the number of iterations of the
GaussSeidel method needed to reduce the difference by a factor of 10−p is

nGS =
−p ln(10)

ln(ρGS)
=
−p ln(10)

ln(cos2( π
N

))
=
−p ln(10)

2 ln(cos( π
N

))
=
nJ
2

(0.51)

Hence the GaussSeidel converges twice as fast as the Jacobi method.

[5 marks]
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