
p. 1 Ch. : 1 LORENTZ GROUP

1 Lorentz group

The Lorentz group is introduced and discussed in a series of statements
and observations below. Hopefully you will find that you already know
some of these things.

• A fundamental property of Lorentz transformations is the invariance
of xµxµ = c2t2 − x2 − y2 − z2. An equivalent statement is that Lorentz
transformation matrices satisfy

ΛTgΛ = g . (1)

Formally, any transformation Λ satisfying Eq. (32) is a Lorentz transfor-
mation.

• The set of matrices satisfying Eq. (32) is called the Lorentz group.

One can show that this set of matrices obey all four aspects of the math-
ematical definition of a group, under the operation of matrix multipli-
cation.

• Looks like we just defined the Lorentz group as a group of matrices.
Physically, of course, the Lorentz group is the group of transformations
represented by these matrices. The group operation (matrix multiplica-
tion) corresponds to successive application of transformations.

For example, if Λ1 and Λ2 are matrices representing two Lorentz trans-
formations, then the matrix Λ1Λ2 represents the following transforma-
tion: apply Λ2 first, and then apply Λ1. (Note the order.)

• The metric g in Eq. (32) could be either

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 or g =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The defining equation (32) is not affected by this choice, since the two
g’s differ only by a sign.

The negative signature metric is preferred in particle physics and quan-
tum field theory, while the positive signature metric is preferred in gen-
eral relativity. We’ve mostly used the first, in this semester.

• The Lorentz group, as defined, includes also reflections of time and re-
flections of space. These are not very physical transformations. If we
omit these, we obtain the set of PROPER ORTHOCHRONOUS transfor-
mations, or the set of physical Lorentz transformations. This restricted
set itself forms a group, known as the restricted Lorentz group.
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• The sign of the time coordinate gets flipped by an LT if Λ0
0 is negative.

A Lorentz transformation that retains the sign of the time coordinate is
called orthochronous.

We will show later that
∣∣Λ0

0
∣∣ ≥ 1, i.e., values of Λ0

0 between −1 and
+1 are excluded.

Thus a Lorentz transformation Λ is

orthchronous if Λ0
0 > 1,

non-orthchronous if Λ0
0 < −1.

• Proper and improper:

You can show from the definition (32) that the determinant-squared of
an LT is 1, so that det Λ is either +1 or −1. The LT is proper if det Λ = 1
and improper if det Λ = −1.

This terminology is the same as that used for 3 × 3 rotation matrices
R. If detR = −1, the matrix represents a reflection in addition to a
rotation.

In the case of LT’s, det Λ = −1 can mean either spatial reflection or
temporal reversal. But not both: A Lorentz transformation that involves
both time reversal and spatial reflection will have det Λ = +1 and hence
is ‘proper’. Of course, you would probably not regard this transforma-
tion as being physical, despite the name proper.

• The matrix

T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


represents the operation of time reversal, as you can see by applying it
to a spacetime coordinate (ct, x, y, z). It is a valid Lorentz transformation
according to the definition (32). ( Please check! )

The matrix

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


represents the operation of spatial reflection, also known as a PARITY
TRANSFORMATION. This is also a valid Lorentz transformation.

Note that the matrices T and P look formally identical to the metric
tensor g or its negative. This does not have any physical meaning, as g
does not represent a transformation.
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• The unit matrix is a member of the Lorentz group defined by Eq. (32)
and hence represents a valid Lorentz transformation.

What transformation does the unit matrix represent? The do-nothing
transformation, of course. It’s the transformation that takes you from
the spacetime coordinates measured from frame Σ to the spacetime co-
ordinates measured from the same frame Σ.

The unit matrix is a proper and orthochronous LT. ( Please check. )

• Members of the restricted Lorentz group, i.e., the proper orthochronous
Lorentz transformations, are connected continuously to the unity ma-
trix. Those LT’s which involve flipped temporal or spatial coordinates
are NOT continuously connected to the unit matrix.

Thus, the Lorentz group can be broken into four disjoint pieces, illus-
trated in the table:

Λ0
0 > 1

ORTHOCHRONOUS

Λ0
0 < 1

NON-
ORTHOCHRONOUS

det Λ = +1

PROPER
Λ(p.o.) TPΛ(p.o.)

det Λ = −1

IMPROPER
PΛ(p.o.) TΛ(p.o.)

We can’t list all the elements in each of the four blocks; so we have
labeled them with representative matrices. Here Λ(p.o.) is an arbitrary
proper orthogonal Lorentz transformation, i.e., a representative of the
the set of physical Lorentz transformations. The top left block repre-
sents all transformations continuously connected to this one, i.e., the
whole set of physical Lorentz transformations. The lower left block rep-
resents all transformations continuously connected to PΛ(p.o.), which is
the matrix obtained by reflecting the spatial components of Λ(p.o.). You
should be able to guess the definitions of the other two blocks.

The identity matrix belongs to the top left segment of the Lorentz group.
Thus, the other blocks in the table cannot form groups by themselves —
they lack the identity element.
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• The Lorentz group is represented as O(3, 1) or O(1, 3). The numbers
show that one of the components is treated specially, i.e., that one of the
diagonal elements of the 4× 4 metric tensor has opposite sign.

The subset of the Lorentz group that is proper is also a group.

Exercise: Show that this subset satisfies closure, i.e., that the prod-
uct of any two LT matrices having determinant +1 is also an LT
matrix having determinant +1.

The proper Lorentz group consists of the two upper blocks in the table
above. This group is called SO(3, 1). The ‘S’ stands for ‘special’, mean-
ing positive determinant.

If we further restrict to transformations that are both proper and or-
thochronous, we obtain the restricted Lorentz group. This is the top left
block in the table. This group is represented by the very fancy name
SO↑(3, 1). The ↑ superscript indicates that time is moving forward, in
the physically meaningful direction.

Many people would think of SO↑(3, 1) as the class of physical transfor-
mations. Sometimes, when people say ‘Lorentz transformations’, they
might mean only this class of transformations, leaving out most of the
full Lorentz group. As always, you have to figure out from the context
what is meant.

• Showing that
∣∣Λ0

0
∣∣ ≥ 1

We’ve claimed this inequality previously; let’s prove it.

The defining relation (32) can be written in tensor-index notation as

Λµ
α Λν

β gµν = gαβ

Let’s focus on the values α = β = 0:

Λµ
0Λν

0gµν = g00

=⇒
(

Λ0
0

)2
−

3

∑
i=1

(
Λi

0

)2
= 1

=⇒
(

Λ0
0

)2
= 1 +

3

∑
i=1

(
Λi

0

)2
≥ 1

2 Boosts and rotations

The restricted Lorentz group contains BOOSTS and ROTATIONS and com-
binations of the two.
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• Boost matrices are SYMMETRIC.

• Two successive boosts result in a pure boost only if they are in the same
direction. For example, consider a boost in the x direction followed by
another boost in the x direction.

γv2 −γv2

( v2
c
)

0 0
−γv2

( v2
c
)

γv2 0 0
0 0 1 0
0 0 0 1




γv1 −γv1

( v1
c
)

0 0
−γv1

( v1
c
)

γv1 0 0
0 0 1 0
0 0 0 1



=


γw −γw

(w
c
)

0 0
−γw

(w
c
)

γw 0 0
0 0 1 0
0 0 0 1

 with

w =
v1 + v2

1 + v1v2/c2

You know this already, but if you don’t remember, you should try mul-
tiplying and showing this. Physically, this means considering a trans-
formation from frame Σ to frame Σ′ (relative speed v1), and then from
Σ′ to Σ̃ (relative speed v2), when all three are in standard configuration,
i.e., relative motion in the common x, x′, x̃ direction. The net transfor-
mation obtained by matrix multiplication is the transformation from Σ
to Σ̃. The relative speed between frames Σ and Σ̃ is of course not v1 + v2
but rather (v1 + v2)/(1 + v1v2/c2).

• However, when we apply successively boosts in different directions, we
do not obtain a pure boost. For example,

γv2 0 −γv2

( v2
c
)

0
0 0 1 0

−γv2

( v2
c
)

0 γv2 0
0 0 0 1




γv1 −γv1

( v1
c
)

0 0
−γv1

( v1
c
)

γv1 0 0
0 0 1 0
0 0 0 1


turns out to be a non-symmetric matrix. Thus a boost applied in the x
direction, followed by a boost applied in the y direction, does not result
in a pure boost.

This shows that Lorentz boosts do not form a group by themselves. Ro-
tations are needed to complete the group, i.e., to make the set of trans-
formations satisfy closure.

• Symbolically:

Restricted Lorentz group = boosts + rotations

and also
Lorentz group = boosts + rotations + T + P


