
Chapter 4

Central forces

If the force between two bodies is directed along the line connecting the (centres of mass
of) the two bodies, this force is called a central force. Since most of the fundamental
forces we know about, including the gravitational, electrostatic and certain nuclear
forces, are of this kind, it is clear that studying central force motion is extremely imortant
in physics.

Moreover, the motion of a system consisting of only two bodies interacting via a central
force is one of the few problems in classical mechanics that can be solved completely
(once you add a third body it becomes, in general, unsolveable). Examples of such
systems are the motion of planets and comets around a star, or satellites around a
planet, or binary stars; and classical scattering of atoms or subatomic particles. The
full description of atoms and subatomic particles requires quantum mehcanics, but even
here the classical analysis of central forces can yield a great deal of insight.

In the two-body problem we start with a description in terms of 6 coordinates, namely
the three (cartesian) coordinates of each of the two bodies. We shall see that it is possible
to reduce this to just 2, and for some purposes only 1 effective degree of freedom. This
reduction will happen in 3 steps:

1. We can treat the relative motion as a 1-body problem.

2. The relative motion is 2-dimensional (planar).

3. We can use angular momentum conservation to treat the radial motion as 1-
dimensional motion in an effective potential.

4.1 One-body reduction, reduced mass

We start with a system of two particles, with coordinates ~r1 and ~r2. We need six
coordinates to describe this system, and this is provided by the three components of
~r1 and the three components of ~r2. However, since we know that the potential energy
only depends on the combination r = |~r| = |~r1− ~r2|, we may want to describe it instead
in terms of the three components of the relative coordinate ~r = ~r1 − ~r2 and a second
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vector, which we can take to be the centre-of-mass vector

~R =
m1~r1 +m2~r2

m1 +m2

. (4.1)

First we need to express ~r1 and ~r2 in terms of the new coordinates ~R,~r. We have

~r = ~r1 − ~r2 ⇐⇒ ~r1 = ~r + ~r2 (4.2)

~R =
m1~r1 +m2~r2

m1 +m2

=
m1(~r + ~r2) +m2~r2

m1 +m2

= ~r2 +
m1

m1 +m2

~r , (4.3)

which gives

~r2 = ~R− m1

m1 +m2

~r (4.4)

~r1 = ~r + ~r2 = ~R +
m2

m1 +m2

~r (4.5)

We now plug (4.4), (4.5) into the expression for the kinetic energy,
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(4.6)

The total lagrangian is therefore

L = T − V =
1

2
M ~̇R2 +

1

2
µ~̇r2 − V (r) . (4.7)

We see that the lagrangian splits into two separate parts: one describing the motion of
the centre of mass, and one describing the relative motion. We can therefore analyse the
relative motion without any reference to the overall motion of the centre of mass. More-
over, ~R is cyclic, so its canonical momentum is conserved. The canonical momentum
conjugate to ~R is

Pi =
∂L

∂Ṙi

= MṘi =⇒ ~P = M ~̇R . (4.8)

This is just the total momentum of the system:

~P = M ~̇R = (m1 +m2)
m1 ~̇r1 +m2 ~̇r2

m1 +m2

= m1 ~̇r1 +m2 ~̇r2 . (4.9)
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Therefore, the absolute motion is merely linear motion with constant total momentum.
From now on, we will ignore the absolute motion completely, and focus only on the
relative motion — ie, we will drop the first term in (4.7). The lagrangian then becomes

L =
1

2
µ~̇r2 − V (r) . (4.10)

This looks exactly like the lagrangian for a single particle with position ~r in a potential
V (r), but with mass

µ =
m1m2

m1 +m2

= the reduced mass (4.11)

We have therefore reduced two-body motion to the equivalent motion of a single body
with mass µ.

It is worthwhile looking more closely at the reduced mass and its relation to the masses
m1,m2. We can assume without any loss of generality that m1 ≥ m2 (since we could
just swap the labels if it were the other way around). Then we have

m1

m1 +m2

≥ 1

2
,

m2

m1 +m2

≤ 1

2
(4.12)

=⇒ m1

2
≥ m1m2

m1 +m2

≥ m2

2
. (4.13)

So we see that the reduced mass has a value that lies between half the larger mass and
half the smaller mass.

Two special cases of particular interest are where the two masses are equal, and where
one mass is much larger than the other. The first includes scattering of identical particles
(for example two α-particles) as well as some binary stars. The second includes the
motion of a planet or comet around the sun, or satellites around a planet.

In the first case, m1 = m2 = m, we get that the reduced mass is µ = m/2, ie the reduced
mass is half the mass of each body.

In the second case, m2 � m1, we can rewrite the reduced mass as

µ = m2
1

1 + m2

m1

= m2

(
1− m2

m1

+
(m2

m1

)2

+ . . .
)
. (4.14)

If m2 is small enough compared to m1 (for example, for the earth–sun system we have
M⊕/M� = 3 · 10−6) we can just set µ = m2, ie the reduced mass equals the smaller of
the two masses.

4.2 Angular momentum and Kepler’s second law

Our system is now equivalent to a single particle with mass µ moving in a spherically
symmetric potential V (r). Since we have spherical symmetry, the angular momentum
~L = ~r× ~p is conserved, both in magnitude and in direction. We will use this to simplify
the problem further.

First, we note that since the direction of ~L is conserved, both the position vector ~r and
momentum vector ~p = µ~̇r must be in the plane that is orthogonal to this vector, as the
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cross product between any two vectors is orthogonal to both vectors. We can choose
the z-axis of our coordinate system to be pointing in the direction of ~L, ie ~L = `ẑ, and
in this case both ~r and ~p must be in the xy-plane.

We can get a more physical understanding of this by noting that as long as ~p = m~̇r
remains in the xy-plane, ~r will not move out of this plane, while as long as ~r remains
in that plane there is no force that will move ~p our of the plane, since the central force
always points towards the centre (or away from it, in the case of a repulsive force), ie
along the vector ~r.

We have therefore reduced the motion to planar (2-dimensional) motion, and we can
use polar coordinates (r, θ) to describe this motion (where θ is the angle with some
arbitrarily chosen direction in the plane of motion). The lagrangian for the system, in
those coordinates, becomes

L =
1

2
µṙ2 +

1

2
µr2θ̇2 − V (r) . (4.15)

Since L does not depend on the angle θ (this is the remaining rotational symmetry), the
angular momentum ` = pθ is conserved,

` = µr2θ̇ = constant . (4.16)

This is exactly equivalent to Kepler’s second law for planetary motion, which gives a
nice geometrical interpretation of angular momentum conservation. Consider the area
dA swept out by the radius vector in a small (infinitesimal) time dt. The angle swept
out in that time is dθ = θ̇dt, and the length of the arc swept out is ds = rdθ = rθ̇dt
(see fig. 4.1). If dθ is small we can approximate the area by a triangle with length r and
height ds, ie

dA =
1

2
rds =

1

2
r · rθ̇dt ⇐⇒ dA

dt
=

1

2
r2θ̇ =

`

2µ
= constant . (4.17)

r(t)

r(t+dt)

dθ

rdθ

Figure 4.1: The area swept out by a radius vector.

Kepler’s second law reads, in words,

A line joining a planet and the Sun sweeps out equal areas during equal
intervals of time.
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Kepler came to this conclusion through painstaking observation of planetary motions,
and the apparatus of newtonian and lagrangian mechanics, which we are using here,
was developed long after his time. But from this derivation we can see that this law is
valid not just for planetary motion, but for all central force motion, whatever the force
is, and is equivalent to conservation of angular momentum.

Example 4.1

The planet Mercury orbits the Sun in 87.97 days, in an elliptic orbit with semimajor
axis a = 57.91 · 106km and semiminor axis b = 56.67 · 106km.

1. What is the areal velocity of Mercury?

2. Use the relation between areal velocity and angular momentum to find the
speed of Mercury

(a) at its perihelion (closest to the sun), 46.00 · 106km from the sun;

(b) at its aphelion (furthest from the sun), 69.82 · 106km from the sun.

Answer:

1. Since the areal velocity is constant, it is just equal to

dA

dt
=
A

T
=

πab

87.97d
=
π · 57.91 · 56.67 · 1012km2

87.97 · 86400s
= 1.3565 · 109 km2/s , (4.18)

where we have also used that the area of an ellipse is A = πab.

2. From the relation between areal velocity and angular momentum `, we have

dA

dt
=

`

2µ
=
|~r × µ~v|

2µ
=

1

2
|~r × ~v| . (4.19)

At perihelion and aphelion, the radial velocity is zero, so ~v is orthogonal to
the radius vector ~r. At these points we therefore have

dA

dt
=

1

2
rv =⇒ v =

2dA/dt

r
. (4.20)

At perihelion:

v =
2 · 1.3565 · 109km2/s

46.00 · 106km
= 58.98km/s. (4.21)

At aphelion:

v =
2 · 1.3565 · 109km2/s

69.82 · 106km
= 38.86km/s. (4.22)
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4.3 Effective potential and classification of orbits

Now that we have shown that angular momentum is conserved, we can use this to
simplify the problem further. We have already seen how a 2-dimensional system can
be treated as one-dimensional motion in an effective potential when one coordinate is
cyclic. In our case, we have

pθ = ` = µr2θ̇ ⇐⇒ θ̇ =
`

µr2
, (4.23)

so we can write the hamiltonian or total energy as

H =
p2
r

2µ
+

p2
θ

2µr2
+ V (r) , (4.24)

or

E =
1

2
µṙ2 +

`2

2µr2
+ V (r) =

1

2
µṙ2 + Veff(r) . (4.25)

The term Vc(r) = `2/2µr2 is sometimes called the centrifugal potential, and can be
thought of as giving rise to a (fictitious) “centrifugal force” Fc ∝ r−3. By investigating
the shape of the effective potential Veff we can find out what kinds of motion are possible
in the radial direction. Some examples of effective potentials are shown in figure 4.2.

In general, if ` 6= 0, the centrifugal potential Vc(r)→ +∞ as r → 0, providing a barrier
against the bodies getting too close. This term will dominate at short distances unless
V (r) is strongly attractive, meaning that V (r)→ −∞ fast enough. “Fast enough” here
means that

V (r) ∼ − 1

rn
, n > 2 , (4.26)

since if n < 2 we will always find that ar−n < br−2 for any a, b if r is small enough.

4.4 Integrating the energy equation

We can also use (4.25) to completely solve the motion in r, by using energy conservation
and rewriting it to get

1

2
µṙ2 = E − Veff(r) (4.27)

⇐⇒ ṙ =
dr

dt
= ±

√
2

µ

(
E − Veff(r)

)
= ±

√
2

µ

(
E − V (r)− `2

2µr2

)
(4.28)

=⇒
∫

dr√
2
µ

(
E − Veff(r)

) =

∫
dt = t− t0 . (4.29)

Note that this does not tell us anything directly about the shape of the orbit, since for
that we still need to know θ(t), but once we have found r(t) it is straightforward to
obtain θ from (4.23).

However, if we want to obtain the shape of the orbit, and are not particularly interested
in the motion in time, we can use a similar trick to obtain r as a function of θ or
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V(r)=kr
2

V(r) = k/r

V(r) = -k/r

V(r) = -k/r³

Figure 4.2: The effective potential (4.25) for different types of potential V (r). The
dotted red curves denote the centrifugal potential, and the dotted black curves V (r).
The thick blue curve is the effective potential Veff(r). Top left: a quadratic (harmonic
oscillator) potential. The motion in r is bounded for all values of ` > 0. Top right: a
repulsive, inverse-square force law, V (r) = k/r. In this case, only unbounded motion is
possible.Bottom left: an attractive, inverse-square force law. The different solid curves
correspond to different values of `. Here the motion is always bounded if E < 0, and
unbounded if E > 0. Bottom right: an attractive multipole force with V (r) = −k/r3.
Here we can have bounded motion through the origin or unbounded motion.

vice-versa. Using (4.23) and (4.28) together, we can write

dθ

dr
=
dθ

dt

dt

dr
=

`

µr2

±
√
µ/2√

E − Veff(r)
(4.30)

=⇒ `√
2µ

∫
dr

r2
√
E − Veff(r)

=

∫
dθ = θ − θ0 . (4.31)

This gives us θ(r), which we can then invert to find r(θ), which defines the shape of the
orbit.

In particular, if the motion is bounded, we can use this to find the period T of the radial
motion, ie the time it takes to complete one full oscillation in the radial direction, from
rmin to rmax and back again. This is given by

T = 2

rmax∫
rmin

√
µ/2 dr√

E − Veff(r)
, (4.32)
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where the factor 2 accounts for the “return journey” from rmax to rmin. Similarly, we
can find the angular period ∆θ, which is the angle swept out in the course of one full
radial oscillation. It is given by

∆θ =

√
2

µ
`

rmax∫
rmin

dr

r2
√
E − Veff(r)

. (4.33)

If ∆θ = 2πm/n, where n and m are integers, then the system will return to the same
place after n radial oscillations, having completed m revolutions of an angle of 2π. Such
an orbit is closed. A remarkable result is that closed (non-circular) orbits are extremely
rare: Bertrand’s theorem (1873) states that the only potentials that give rise to such
orbits are the harmonic oscillator V (r) = kr2 and the inverse-square force V (r) = −k/r
(see Goldstein, pp. 89–92 for an explanation).

4.5 The inverse square force, Kepler’s first law

From now on we will concentrate on the attractive inverse-square force law, ie

V (r) = −k
r

=⇒ Veff(r) =
`2

2µr2
− k

r
. (4.34)

This describes the gravitational force between two bodies, with k = Gm1m2 (where
m1,m2 are the masses of the two bodies). It could also describe the electrostatic at-
traction between two opposite charges Q1,−Q2, in which case we would have k =
Q1Q2/4πε0.

Looking at Veff(r), we find that bounded motion is possible if Emin ≤ E < 0, where
Emin is the minimum value of Veff (which we will derive in a moment). For E ≥ 0 the
radial motion is unbounded, although for any ` 6= 0 there is a minimum distance rmin.
If E = Emin we have a stable circular orbit.

Let us now find the minimum and maximum distances for a particular energy and
angular momentum. They are given by

Veff(r) =
`2

2µr2
− k

r
= E (4.35)

⇐⇒ Er2 + kr − `2

2µ
= 0 (4.36)

⇐⇒ r = rmin,max =
−k ±

√
k2 + 2E`2

µ

2E
= − k

2E

(
1±

√
1 +

2E`2

µk2

)
= a(1± e) ,

(4.37)

with

a = − k

2E
, e =

√
1 +

2E`2

µk2
. (4.38)

Inspecting (4.37) we see that
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• If E < Emin = −µk2/2`2, the expression inside the square root becomes negative,
and there is therefore no solution.

• If E = Emin the square root (e) is zero, and we have rmin = rmax = a = `2/µk.
This corresponds to a stable circular orbit with r = ro = `2/µk. You can verify
that this also corresponds to the minimum of Veff, where V ′eff(ro) = 0.

• If Emin < E < 0 there are two solutions, rmin = a(1− e), rmax = a(1 + e), and the
radial motion is bounded between these two distances.

• If E = 0, a→∞, but (4.35) still has a single solution at r = rmin = `2/2µk. There
is no maximum value for r, so the motion becomes unbounded.

• If E > 0 we have e > 1 and a < 0. Since the distance r must be positive, only
the minus sign in (4.37) gives a physically acceptable solution, rmin = a(1− e) =
(e−1)k/2E. There is again no maximum value for r, and the motion is unbounded.

Example 4.2

The asteroid Pallas orbits the sun in an orbit with perihelion distance rmin = 3.19 ·
1011m and e = 0.231. The speed of Pallas relative to the sun at perihelion is
v = 2.26 · 104m/s. Find the aphelion distance rmax of Pallas and its speed at that
point.

Answer: From (4.37) we find that the aphelion distance rmax is

rmax =
1 + e

1− e
rmin =

1.231

0.769
· 3.19 · 1011m = 5.11 · 1011m . (4.39)

To find the speed at aphelion, we need to use either conservation of angular momen-
tum or conservation of energy. Using angular momentum is easier. At perihelion
and aphelion we have ~v ⊥ ~r and therefore ` = mvr where m is the mass of the
asteroid. The aphelion and perihelion speeds va, vp are therefore related by

` = mvprmin = mvarmax (4.40)

=⇒ va =
rmin

rmax

va =
3.19

5.11
· 2.20 · 104m/s = 1.37 · 104m/s . (4.41)

We can now use the methods of Section 4.4 to find an equation for the orbit. For
V (r) = −k/r (4.31) becomes

θ(r) = ±
∫

`dr

r2

√
2µ
(
E + k

r
− `2

2µr2

) = ±
∫

dr

r2

√
2Eµ
`2

+ 2µk
`2r
− 1

r2

. (4.42)

We now make the substitution

u =
1

r
=⇒ du = −dr

r2
, (4.43)
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and also introduce the parameter α = `2/µk. This gives us

θ(r) = ±
∫

du√
2Eµ
`2

+ 2u
α
− u2

= ±
∫

dv√
e2

α2 − v2

, (4.44)

where in the second step we have made the further substitution v = u − 1/α and
introduced the parameter e from (4.38). We can look up this integral in a table, or solve
it using additional clever substitutions. We can introduce the angle φ given by

v =
e

α
cosφ =⇒ dv = − e

α
sinφ dφ ,

√
e2

α2
− v2 =

e

α

√
1− cos2 φ = ± e

α
sinφ ,

(4.45)
and therefore

θ =

∫
dv√
e2

α2 − v2

= −
∫
dφ = −φ , (4.46)

where we have chosen the integration constant to be zero. We can do this because the
rotational symmetry of the problem means that we can choose θ = 0 to be any direction
in the plane. Working our way back, we then find

v =
e

α
cos θ =

1

r
− 1

α
⇐⇒ α

r
= e cos θ + 1 (4.47)

⇐⇒ r =
α

1 + e cos θ
with α =

`2

µk
, e =

√
1 +

2E`2

µk2
. (4.48)

This is the equation for a conic section, where e is the eccentricity, and governs the
shape of the orbit (while α governs the size).

• If e = 0, r is constant and the orbit is a circle, as can be easily seen from (4.48).

• If 0 < e < 1, the orbit is closed, with 1/(1 + e) ≤ r ≤ 1/(1− e). In this case, the
orbit is an ellipse.

• If e = 1, r → ∞ as θ → π, so the orbit is open (just). In this case the orbit is a
parabola.

• If e > 1, the orbit is again open (unbounded), but there is a limit to the possible
angles, cos θ < 1/e. In this case the orbit is a hyperbola.

4.5.1 The shapes of the orbits

Starting from equation (4.48) we may now write the shape of the orbit in Cartesian
coordinates. We remember that cos θ = x

r
and insert that into (4.48), yielding

r =
α

1 + ex
r

This equation can be rewritten as r = α−ex. By squaring the equation and substituting
r2 = x2 + y2 we get

y2 = α2 − 2αex+ (e2 − 1)x2.
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This is the equation for a conic section, which has a solutions ellipses, parabolas and
hyperbolas. We note that the sign in front of x2 depends on whether e > 1 or e < 1.
Completing the square over x then reads

y2 = α2 +
(
e2 − 1

)(
x2 − 2x

αe

e2 − 1

)
= α2 +

(
e2 − 1

)(
x2 − 2x

αe

e2 − 1
+

α2e2

(e2 − 1)2 −
α2e2

(e2 − 1)2

)
= α2 − α2e2

e2 − 1
+
(
e2 − 1

)(
x− αe

(e2 − 1)

)2

= − α2

e2 − 1
+
(
e2 − 1

)(
x− αe

e2 − 1

)2

Now if we identify a = α
1−e2 and b2 = α2

(1−e2)2
we can reformulate the equations as

(x− ea)2

a2
+
y2

b2
= 1 with e2 − 1 =

2E`2

µk2
(4.49)

We can now see that when:

• E < 0 ⇒ 1 − e2 > 0. This equation describes an ellipse with semi-major axis a
and semi-minor axis b. See Figure 4.3.

• E = 0⇒ e = 1. Then (4.49) reduces to y2 = α2−2αx, which is a parabolic curve.

• E > 0⇒ e > 1⇒ b2 < 0, and the above equation reads

(x− ea)2

a2
− y2

|b|2
= 1.

This equation describes a hyperbolic curve with the closet passage to the origin
being ea and the asymptotic lines being y = x |b|

a
. See Figure 4.4.

4.6 More on conic sections

Conic sections are all solutions of equations of the type

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 .

They are called conic sections because this type of equation appears when you intersect
a cone, described by the equation x2 +y2 = kz2, with a plane, described by the equation
αx + βy + γz = δ. The type of curve described by these equations depends on the
parameters A,B,C:

• If B2 − 4AC < 0, we get an ellipse. After a change of variables, this curve can be
written on the form

x2

a2
+
y2

b2
= 1 . (4.50)
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• If B2 − 4AC = 0, we get a parabola. The equation can then be written, after a
change of variables, as

y = ax2 . (4.51)

• If B2 − 4AC > 0, we get a hyperbola. We can then make a change of variables to
write the resulting equation as

x2

a2
− y2

b2
= 1 or xy = a2 . (4.52)

That this definition is equivalent to (4.48) is by no means obvious. In the following we
will look in some more detail at the different definitions of conic sections, and establish
that they are indeed equivalent. In the process, we will also find some important relations
between the various parameters of the conic sections, in particular the ellipse.

There is yet another general definition of a conic section, namely the curve defined by
r = ep, where p is the distance to a straight line, called the directrix. It is straightforward
to prove the equivalence of this and (4.48). If we place a straight line parallel to the
y-axis at x = α/e, then the distance p from a point on the curve (4.48) to this line is

p =
α

e
− x =

α

e
− r cos θ =

α

e
− α cos θ

1 + e cos θ

=
α(1 + e cos θ)− eα cos θ

e(1 + e cos θ)
=

α

e(1 + e cos θ)
=
r

e
. (4.53)

4.6.1 Ellipse

θ

rl
1

a

b

c=ea

l
2

Figure 4.3: An ellipse with major semiaxis a, minor semiaxis b and foci at a distance c
from the centre of the ellipse.
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An ellipse, pictured in Figure 4.3, can be defined by first identifying two points, called
the foci (denoted by crosses in Fig. 4.3). If `1 and `2 are the distances of a point from
each of the two foci, then an ellipse is any set of points where the sum of `1 and `2 is
constant,

`1 + `2 = 2a . (4.54)

This definition has an optical interpretation: if you place a light source at one focus
(and a screen between to the two foci), then light that is reflected off any point of the
ellipse will gather at the second focus — which is indeed why it is called a focus. This
definition can also be used to draw an ellipse, using two pins and a piece of string. You
pin the ends of a string of length 2a at each focus, pull the string tight with the tip of
your pen, and move the pen around while keeping the string tight. This will trace out
an ellipse.

We will now show that (4.54) is equivalent to (4.50), if we take the origin to be at
the centre of the ellipse. The two foci are then located at (−c, 0) and (c, 0), and the
distances `1, `2 from a point (x, y) to each focus are

`2
1 = (x+ c)2 + y2 , `2

2 = (x− c)2 + y2 . (4.55)

The ellipse is given by

`1 + `2 =
√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = 2a (4.56)

⇐⇒
√

(x+ c)2 + y2 = 2a−
√

(x− c)2 + y2 (4.57)

⇐⇒ (x+ c)2 + y2 = 4a2 + (x− c)2 + y2 − 4a
√

(x− c)2 + y2 (4.58)

⇐⇒ 2cx = 4a2 − 2cx− 4a
√

(x− c)2 + y2 (4.59)

⇐⇒
√

(x− c)2 + y2 = a− c

a
x (4.60)

⇐⇒ x2 − 2cx+ c2 + y2 = a2 − 2cx+
c2

a2
x2 (4.61)

⇐⇒ y2 +
a2 − c2

a2
x2 = a2 − c2 (4.62)

⇐⇒ x2

a2
+
y2

b2
= 1 with b2 = a2 − c2 . (4.63)

The two main (“long” and “short”) diameters of the ellipse, with lengths 2a and 2b, are
called the major axis and the minor axis, respectively. The parameters a and b, being
half of the major and minor axes, are called the major semiaxis and minor semiaxis.

To show that this is also equivalent to (4.48), we will have to put the origin at one of
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the foci. Let us choose the right one to be specific. Instead of (4.50) we now have

(x+ c)2

a2
+
y2

b2
= 1 (4.64)

⇐⇒ a2b2 = b2x2 + 2b2cx+ b2c2 + a2y2

= (b2 − a2)x2 + a2(x2 + y2) + 2b2cx+ b2c2

= −c2x2 + a2r2 + 2b2cx+ b2c2

(4.65)

⇐⇒ a2r2 = b2(a2 − c2)− 2b2cx+ c2x2 = b4 − 2b2cx+ c2x2 = (b2 − cx)2 (4.66)

⇐⇒ r =
b2 − cx
a

=
b2 − cr cos θ

a
(4.67)

⇐⇒ r(1 +
c

a
cos θ) =

b2

a
(4.68)

⇐⇒ r =
α

1 + e cos θ
with e =

c

a
, α =

b2

a
= a(1− e2) (4.69)

So we see that (4.48) indeed corresponds to an ellipse, with the origin at one of the foci,
if e < 1. This corresponds to Kepler’s first law:

The planets move in elliptical orbits, with the sun at one focus.

4.6.2 Parabola

If one of the foci is taken away to infinity, the resulting curve becomes a parabola.
The optical interpretation of this is that parallel rays (corresponding to rays coming in
from a source at infinity) are focused in a single point. This property is widely used in
telescopes and satellite dishes, which all tend to have a parabolic shape.

It will be left as an exercise to prove that (4.48), with e = 1, is equivalent to the usual
y = Ax2.

4.6.3 Hyperbola

If the eccentricity e > 1, the resulting curve is a hyperbola. On inspection of (4.48) you
will see that r → ∞ as θ → ± cos−1(1/e) = ±θmax. The curve will therefore approach,
but never touch, the two straight lines defined by θ = ±θmax. One may also construct
the mirror image of this curve,

r =
α

1− e cos θ
=

α

1 + e cos(π − θ)
. (4.70)

The two mirror images, called the two branches of the hyperbola, can be shown to be
equivalent to the expressions (4.52). In the second case, we see that θmax = π

4
or 45◦.

Example 4.3

A satellite in orbit around the earth has speed v = 7400m/s at its apogee, 630km
above the surface of the earth. What is its distance from the surface of the earth at
perigee, and what is its speed at that point?
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Figure 4.4: A hyperbola with equation x2

a2
− y2

b2
= 1.The two branches stay within (but

approach asymptotically) the cone y = ± b
a
x

Answer:

The energy of a satellite with massm, orbiting the earth at a distance r and travelling
with a speed v is

E =
1

2
mv2 −GmM⊕

r
. (4.71)

The angular momentum is

` = |~L| = m|~v × ~r| = mvr sin θvr . (4.72)

At perigee or apogee the velocity (and momentum) is perpendicular to the radial
direction, so ` = mvr at these points of the orbit.

Since the mass of the satellite is much smaller than the mass of the earth, the reduced
mass µ can be replaced by m:

µ =
mM⊕
m+M⊕

≈ mM⊕
M⊕

= m. (4.73)

The constant k in the inverse-square force is in this case k = GmM⊕. With this
knowledge we can work out the parameters α (or major semiaxis a) and eccentricity
e for the orbit. There are several ways doing this. The simplest is probably using
the relation between the energy and semimajor axis, which holds for an elliptical
orbit:

a = − k

2E
= − GmM⊕

mv2 − 2GmM⊕/r
=

GM⊕r

2GM⊕ − rv2
. (4.74)
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In our problem, the speed of the satellite at apogee is v = 7400m/s. The distance
from the centre of the earth is r = 630 km + R⊕ = 7.000 · 106 km. This gives

a =
6.674 · 10−11m3/kg s2 · 5.9736 · 1024kg · 7.000 · 106m

2 · 6.674 · 10−11m3/kg s2 · 5.9736 · 1024kg − 7.000 · 106m · (7400m/s)2

= 6740km . (4.75)

The sum of the apogee distance r+ and the perigee distance r− is twice the major
semiaxis,

r+ + r− = 2a ⇐⇒ r− = 2a− r+ = 2 · 6740km− 7000km = 6481km . (4.76)

Therefore, the height of the satellite above earth at perigee is r− −R⊕ =111km.

The speed may be found from the angular momentum,

` = mv+r+ = mv−r− =⇒ v+ =
r−
r+

v− =
7000

6481
7400m/s = 7994m/s . (4.77)

4.7 Kepler’s third law

Let us look again at the elliptic orbit. We can use the relations we have found above,
together with Kepler’s second law, to derive an expression for the period, the tine T it
takes to complete one full orbit. From Kepler’s second law we have

dA

dt
=

`

2µ
=⇒ A =

∫ T

0

dA

dt
dt =

`

2µ
T . (4.78)

The area of an ellipse is A = πab, so we will need to find a suitable expression for the
minor semiaxis b. We know from above that b2 = a2(1 − e2). Using the expression for
the eccentricity e, we get

b = a
√

1− e2 = a

√
−2E`2

µk2
= a

√
`2

µka
=

`√
µk

a
1
2 . (4.79)

Putting this together, we have

T =
2µ

`
A =

2πµ

`
ab =

2πµ

`

`√
µk
a3/2 = 2π

√
µ

k
a3/2 , (4.80)

or

T 2 =
4π2µ

k
a3 . (4.81)

For planets orbiting the sun, the ratio µ/k = 1/G(m+M�) ≈ 1/(GM�) to a very high
approximation, so the proportionality constant will be the same for all planets! This
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is Kepler’s third law: The square of the orbital period varies like the cube of the major
axis.

Example 4.4

A comet is observed travelling at a speed of 64.0 km/s at is closest approach to the
sun, 64.5 million km from the sun. Will this comet ever be seen again, and if so,
when?

What would the answer be if the closest distance to the sun was 65.0 million km?

Answer: The solution of this problem follows the same lines as that of Example 3,
with the mass of the sun, M�, replacing the mass of the earth, M⊕. The comet
will be seen again if the orbit is closed, which happens if the total energy E < 0.
Alternatively, it is possible to calculate the eccentricity e and determine whether
e < 1 (closed orbit) or e > 1 (open orbit).

We may first note that Newton’s constant G and the mass of the sun M� always
occur in the combination GM� so we may calculate this product once and for all,

GM� = 6.674 · 10−11m3/kg s2 · 1.9881 · 1030kg = 1.3275 · 1020m3/s2

= 1.3275 · 1011km3/s2 .
(4.82)

If the speed of the comet at perihelion is v = 64.0 km/s and the distance is
r = 64.5 · 106 km, we find that

E

m
=
v2

2
− GM�

r
=

64.02

2
km2/s2 − 1.3275 · 1011km3/s2

64.5 · 106km
= −10.14km2/s2 . (4.83)

So E < 0 and the orbit is closed (an ellipse). The comet will therefore be seen again.
To find out when, we use Kepler’s third law,

T =
2π√
GM�

a3/2 . (4.84)

We must first find the semimajor axis a, which is given by

a = − GM�
2E/m

=
1.3275 · 1011km3/s2

2 · 10.14km2/s2
= 6.5152 · 109km . (4.85)

Inserting this into (4.84) gives

T =
2π√

1.3275 · 1011km3/s2
(6.5152 · 109km)3/2 = 9.069 · 109s = 104963d = 287yr .

(4.86)
The comet will be seen again in 287 years.

Making the perihelion distance just a bit larger, 65.0 million km, we find that

E

m
=
(642

2
− 1.3275 · 1011

65 · 106

)
km2/s2 = 5.69km2/s2 . (4.87)

This comet now moves in a hyperbolic orbit, and will never be seen again.
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4.8 Kepler’s equations

It is possible to integrate the angle equation,

dθ

dt
=

`

µr2
=
`(1 + e cos θ)2

µ(`2/µk)2
⇐⇒ dθ

(1 + e cos θ)2
=
µk2

`2
dt . (4.88)

However, the integral that we obtain from this is very ugly and must be expressed in
terms of special functions (elliptic integrals) that cannot be straightforwardly inverted
to obtain θ as a function of the time t.

Instead, we can go back to the energy equation, and the integral (4.29) we obtained
from this,

t− t0 =

√
µ

2

r∫
rmin

dr√
E + k

r
− `2

2µr2

=

√
µ

−2E

r∫
rmin

rdr√
−r2 − k

E
r − k

4E2 + k2

4E2 (1 + 2`2E
µk2

)

=

√
µ

−2E

r∫
rmin

rdr√
a2e2 − (r − a)2

.

(4.89)

We can now make the substitution

r − a = −ae cosψ (4.90)

=⇒
√
a2e2 − (r − a)2 = ae sinψ , (4.91)

rdr = (r − a+ a)dr = (−ae cosψ + a)(ae sinψdψ) (4.92)

Putting this into (4.89) we get

t =

√
µ

2|E|

∫
(−ae cosψ + a)dψ =

√
µ

k

√
k

2|E
a(ψ − e sinψ) + C

=

√
µ

k
a3/2(ψ − e sinψ) + C .

(4.93)

To determine the integration constant C, we take t = 0 at perihelion. At this point we
have

r0 − a = a(1− e)− a = −ae = −ae cosψ0 =⇒ ψ0 = 0 , C = 0 . (4.94)

This gives us

r = a(1− e cosψ)

t =

√
µ

k
a3/2(ψ − e sinψ)

Kepler’s equations (4.95)

The parameter ψ is called the eccentric anomaly. This name dates back to medieval,
ptolemean astronomy where all the heavenly bodies were assumed to move in perfect
circles. To rescue this assumption the planets were assumed to sit on circles which
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were themselves orbiting the earth (or the sun in the Copernicus picture). This epicycle
motion motion was called the ‘anomaly’. The angle θ is called the true anomaly. We
have already seen that θ = ψ = 0 at the perihelion, and we can also see that θ = ψ = π
at aphelion. If e = 0 (circular motion) we have ψ = θ always.

Solving Kepler’s equations is not straightforward. In fact, Kepler himself said:

I am sufficiently satisfied that it cannot be solved a priori, on account of the
different nature of the arc and the sine. But if I am mistaken, and any one
shall point out the way to me, he will be in my eyes the great Apollonius.
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