
Electricity and Magnetism 2 and Statistical Thermodynamics (MP232)
Solution Assignment 4

Tutor: Glen Burrella, (glen-dot-burella-at-nuim-dot-ie), Office 1.1, Math. Physics,
Lecturer: Joost Slingerland, (joost-at-thphys-dot-nuim-dot-ie), Office 1.7D, Math. Physics.

Ex. 4.1: The ideal gas law

In an ideal gas, pressure p, volume V and temperature T in Kelvin satisfy the Ideal Gas
Law. We give this law below in three different forms:

pV = NkBT (1)

pV = nRT (2)

pV =
m

Mmol

RT (3)

In the first line, N is the number of particles that make up the quantity of gas and
kB ≈ 1.38× 10−23 is Boltzmann’s constant.
In the second line, n is the number of mol of gas and R ≈ 8.31 J/(Kmol) is the gas
constant.
In the third line, m is the mass of the quantity of gas and Mmol is the mass of one mol of
gas.
The number of particles in one mol of gas is Avogadro’s number NA ≈ 6.0221× 1023.
For dry air, we have, Mmol ≈ 29 g/mol.

a. Check that the three forms of the ideal gas law given above are all equivalent to
each other.

We have n = N
NA

and, as can be checked from the numerical values given, R = NAkB,

so nRT = N
NA

(NAkB)T = NkBT and the first and second form of the ideal gas law are
equivalent. Also, the number of mol n is equal to the mass of the gas divided by the
mass per mol of gas, n = m

Mmol
, so the last form is also equivalent.

b. If we keep the temperature and the amount of gas constant, what happens to the
volume if we increase the pressure by a factor α, that is p→ αp? Why can we not
expect this behavior to be true for arbitrarily large α in a real gas?

The volume will decrease by a factor α. If p → αp then since V = nRT
p

, we have

V = nRT
p
→ nRT

αp
= 1

α
V . We cannot expect the volume to decrease linearly with

pressure for very high pressures and small volumes, because the particles of the gas will
start interacting strongly under those circumstances. The gas may even liquify or solidiy
and then the volume will change comparatively little with increasing pressure.

c. If we keep the temperature and the volume of gas constant, what happens to the
pressure if we increase the amount of gas by a factor α, that is m→ αm? Why can
we not expect this behavior to be true for arbitrarily large α in a real gas?

The pressure will increase by a factor α. If m→ αm then since p = mRT
MmolV

, the pressure
will change to αp. Again for very high pressures and small volumes, the particles of the
gas will interact strongly and then adding more gas at constant volume and temperature
will increase the pressure much faster than it would according to the ideal gas law.
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d. If we keep the volume and the amount of gas constant, what happens to the pressure
if we increase the temperature from 100K to 200K ?

Since T (the absolute temperature, in Kelvin) doubles, so does p

e. If we keep the volume and the amount of gas constant, what happens to the pressure
if we increase the temperature from 100◦C to 200◦C ?

The absolute temperature changes from 373K to 473K, so the pressure increases by a
factor 473

373
.

f. Derive a formula for the density ρ of the gas from the ideal gas law (the density is the
mass per unit volume). Use this to calculate the density of dry air at a temperature
of 20◦C and at atmospheric pressure (approximately 100 kPa).

the density ρ is given by ρ = m
V

= pMmol

RT
, using the third form of the ideal gas law above.

For dry air, we have Mmol ≈ 29 g = 0.029 kg. Atmospheric pressure is approximately
105 Pa. For the temperature we have 20◦C ≈ 293K and R ≈ 8.31 J/K. Filling this
into the equation for ρ, we find that ρair ≈ 1.2 kg/m3

Ex. 4.2: Maxwell-Boltzmann velocity distribution

For a gas of N particles moving in three dimensions, the Maxwell-Boltzmann velocity

distribution function f is of the form f(v) = Ce−
mv2

2kT , where v =
√
v2
x + v2

y + v2
z and C is

a constant (independent of v)

a. Show that the constant C must be given by C = N
√

( m
2πkT

)3.

Hint: use that
∫∞
−∞ e

−ax2
dx =

√
π
a

The quantity f(v)dvxdvydvz is the number of particles with velocities in a very small
box in velocity space, of volume dvxdvydvz, which contains the point v. The total
number of particles N should equal the sum of this quantity over all such boxes. In
other words, N equals the integral of f over all of velocity space,

N =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(v)dvxdvydvz.

Now, using the property that ea+b = eaeb and the fact that v2 = v2
x + v2

y + v2
z we can

write f(v) = Ce−
mv2

2kT = Ce−
mv2

x
2kT e−

mv2
y

2kT e−
mv2

z
2kT . Substituting this in the integral above,

we see that we may pull the factors which depend only on vx and vy out of the integral
over vz and the factor which depends only on vx out of the integral over vy. This gives

N = C

∫ ∞
−∞

e−
mv2

x
2kT dvx

∫ ∞
−∞

e−
mv2

y
2kT dvy

∫ ∞
−∞

e−
mv2

z
2kT dvz.

With a bit of thought, we realize that this triple integral is just the product of the three
single integrals (as the notation already suggests) and also that each of the three single
integrals will yield the same answer, so in fact, we have

N = C

(∫ ∞
−∞

e−( m
2kT

)x2

dx

)3

= C

(√
2πkT

m

)3

where we used the standard integral given in the hint, with a = m
2kT

. This finally gives

C = N
√

( m
2πkT

)3 as claimed.
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b. What is the most likely value of the velocity v?

The most likely value is the velocity v for which there are the most particles with
velocities in a small box of volume dv around v. In other words, it is the velocity for

which f(v) is maximal. We have f(v) = Ce−
mv2

2kT and we see that the exponent in the
exponential is always negative, unless v2 = 0. Since ex < 1 for x < 0 and e0 = 1, it
follows that the maximal value of f occurs when v2 = 0. Since v2 = v2

x + v2
y + v2

z , we
see that v2 = 0 implies that v = 0. In other words, the most likely velocity is 0.

c. What is the most likely value of the speed v?
Hint: there are many different velocities corresponding to the same speed. The
most likely speed is the speed v for which there are the most particles with speeds
between v and v + dv, for fixed, infinitesimally small dv.

The most likely value of the speed v =
√
v2
x + v2

y + v2
z is the value such that there

are the most particles with speeds between v and v + dv. Therefore, let us calculate
the number of particles with speeds between v and v + dv. We can write this number
as g(v) dv, where g(v) is a new distribution function, for speed instead of velocity. All
particles with speeds between v and v + dv have velocity vectors that lie between the
sphere of radius v and the sphere of radius v+dv in velocity space. To calculate the total
number of particles with velocities in any region in velocity space, we simply integrate
f(v) over that region. In this case it is not so easy to calculate the integral of f(v) in
the region between two spheres exactly, but because dv is very small, we see that f(v)
is nearly constant over the integration region, so we can approximate the integral as just
the product of f(v) and the volume of the region between the spheres. This volume
can be calculated exactly as the difference between the volumes of balls of radii v and
v + dv, but it is also not too difficult to see that, for very small dv, it is just 4πv2 dv,
the product of the area 4πv2 of the spere of radius v and the thickness dv of the region
between the speres. So we find that

g(v) dv = 4πv2f(v) dv

or

g(v) = 4πCv2e−
mv2

2kT

The most likely speed is the speed for which g(v) is maximal. To find out where g is
maximal, we differentiate g with respect to v and set the result equal to zero. This gives

0 = ∂vg = 4πC

(
2v − 2mv3

2kT

)
e−

mv2

2kT .

Since the exponential is never zero, we find that v− mv3

2kT
= 0 and so v = 0 or v2 = 2kT

m

which would imply v =
√

2kT
m

. It is now not so difficult to see (for example by making a

sketch of g(v)) that the maximum of g(v) is actually at the nonzero value, vml =
√

2kT
m

.

In fact, at v = 0, we have g(v) = 0. The reason the most likely speed is not at zero,
like the most likely velocity, is because, even though any particular velocity with speed
vml is less likely to occur than a velocity near v = 0, there are many more velocities
corresponding to nonzero speeds than there are corresponding to speeds near zero.
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d. What is the most likely value of the kinetic energy 1
2
mv2 of a single particle? Does

it correspond to the kinetic energy of a particle at the most likely speed?

The kinetic energy of a particle is E = 1
2
mv2. The most likely kinetic energy is the

energy E such that there are the largest number of particles with energies between E and
E+dE. We can write this number as h(E) dE, where h(E) is another new distribution
function, for energy instead of speed or velocity. Particles with energies between E and
E + dE have speeds between

√
2E/m and

√
2(E + dE)/m, since E = 1

2
mv2 implies

v =
√

2E/m. Since dE is very small, we can replace the square root by its first order
Taylor expansion, which gives

√
2(E + dE)/m =

√
2E/m

√
1 +

dE

E
≈
√

2E/m

(
1 +

dE

2E

)
=
√

2E/m+
dE√
2mE

We must calculate the number of particles with speeds between v(E) =
√

2E/m

and v(E + dE) =
√

2E/m + dE√
2mE

= v(E) + dE
mv(E)

. We can do this as in the
previous part, by integrating f over the region in velocity space between spheres of
radii v(E) and v(E + dE). The distance between these spheres now depends on v,
it is dE

mv(E)
. For small dE, we see that the number of particles we are looking for

is given by h(E)dE = g(v(E)) dE
mv(E)

, so h(E) = g(v(E))
mv(E)

= g(v(E))√
2mE

. Here g(v) is
the distribution function for speeds introduced in the previous part and substituting

g(v) = 4πCv2e−
mv2

2kT = 8πC
m
Ee−

E
kT , we find that

h(E) = 4
√

2
πC

m
√
m

√
Ee−

E
kT

To find the most likely energy, we find the maximum of h(E). At the maximum, we
have

0 = ∂Eh =
4
√

2πC

m
√
m

(
1

2
√
E
−
√
E

kT

)
e−

E
kT .

This happens only when E = kT
2

and so the most likely energy is Eml = kT
2

. The

corresponding velocity is
√

2Eml

m
=
√

kT
m

. This is smaller than the most likely velocity

vml =
√

2kT
m

. The difference is caused by the fact, for given dE and dv, the volume

available in velocity space for particles with energies between E and E+dE grows more
slowly with E than the velocity space volume for particles with speeds between v and
v + dv grows with v.
A faster but perhaps less insightful way to do the same thing is this. We have

g(v) dv = g(
√

2E/m)
dv

dE
dE = g(

√
2E/m)

d
√

2E/m

dE
dE =

g(
√

2E/m)√
2mE

dE

This gives the same function h(E) as before and the rest of the calculation is then
unchanged .
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