
Electricity and Magnetism 2 and Statistical Thermodynamics (MP232)
Assignment 3

Please hand in your solutions no later than Tuesday, March 30, at the start of the 11am lecture.
Late assignments will not be accepted. If you have questions about this assignment,
please ask your tutor,
Glen Burrella, (glen-dot-burella-at-nuim-dot-ie), Office 1.1, Mathematical Physics,
or your lecturer,
Joost Slingerland, (joost-at-thphys-dot-nuim-dot-ie), Office 1.7D, Mathematical Physics.

Ex. 3.1: Wave equations and such

a. From Maxwell’s equations, derive that the magnetic field satisfies the following
equation

∇2B− 1

c2
∂2B

∂t2
= −µ0∇× J

The Maxwell equations are

∇ · E = ρ
ε0

∇× E = −∂B
∂t

∇ ·B = 0 ∇×B = µ0J + µ0ε0
∂E
∂t

and we note that µ0ε0 = 1
c2

.
To derive the equation given in the question, we take the curl of the equation for the
curl of B. This yields

∇×∇×B = µ0∇× J +
1

c2
∂(∇× E)

∂t

where we exchanged the space and time derivatives. On the right hand side we can now
substitute from the Maxwell equation for ∇× E, to obtain an equation in terms of B
only. This gives ∂(∇×E)

∂t
= −∂2B

∂t2
.

The left hand side can also be simplified. We have

∇×∇×B = ∇(∇ ·B)−∇2B = −∇2B.

The first equality is a general vector identity for the curl of the curl of a vector field and
the second equality is true because ∇ ·B = 0. Putting our results together, we get

∇2B− 1

c2
∂2B

∂t2
= −µ0∇× J

b. Inside a homogeneously charged insulator that rotates around the z-axis at angular
velocity ω, the current density has the form J = ρω(y,−x, 0), where ρ is the constant
charge density in the object. Assuming this form of J and assuming that B does
not depend on x and y, show that the equation from part a. reduces to

∂2B

∂z2
− 1

c2
∂2B

∂t2
= 2µ0ρωẑ

Because B does not depend on x and y, ∇2B = ∂2B
∂z2

.
Also, ∇× J = ρω∇× (y,−x, 0) = −2ρωẑ.
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We see that that, for Bx and By, we have simply the wave equations

∂2Bx

∂z2
− 1

c2
∂2Bx

∂t2
= 0

∂2By

∂z2
− 1

c2
∂2By

∂t2
= 0,

that is, the same equations as for the magnetic field in vacuum. To solve the wave equation
for Bx (or By), we make a change of variables.

c. Define u = z + ct and v = z − ct. Show that, for any function f

∂2f

∂z2
− 1

c2
∂2f

∂t2
= 4

∂2f

∂u∂v

We have ∂zf = (∂uf)∂u
∂z

+ (∂vf)∂v
∂z

= ∂uf + ∂vf . This also gives

∂2
zf = ∂z(∂uf + ∂vf)

= ∂z(∂uf) + ∂z(∂vf)

= ∂u∂uf + ∂v∂uf + ∂u∂vf + ∂v∂vf = ∂2
uf + ∂2

vf + 2∂u∂vf.

Similarly ∂tf = (∂uf)∂u
∂t

+ (∂vf)∂v
∂t

= c∂uf − c∂vf . This gives

∂2
t f = ∂t(c∂uf − c∂vf)

= c∂t(∂uf)− c∂t(∂vf)

= c2∂u∂uf − c2∂v∂uf − c2∂u∂vf + c2∂v∂vf = c2(∂2
uf + ∂2

vf)− 2c2∂u∂vf.

Using these results, we see that indeed

∂2f

∂z2
− 1

c2
∂2f

∂t2
= 4

∂2f

∂u∂v

d. Show that Bx(z, t) = f+(z + ct) + f−(z − ct), for some functions f+ and f−.

Using the result of the previous part, the wave equation for Bx reduces to ∂2Bx

∂u∂v
= 0.

Integrating with respect to u gives a constant c, which, however, may still be an arbitrary
function of v, so we find ∂Bx

∂v
= c(v). Now integrating with respect to v gives a function

f+(v) of v whose derivative is c(v), plus a constant, which can be an arbitrary function
f−(u) of u. Hence we find indeed that Bx(z, t) = f+(v)+f−(u) = f+(z+ct)+f−(z−ct),
for some functions f+ and f−.

e. Use the Maxwell equation for ∇ ·B to simplify the equation Bz and then solve for
Bz. Using the solution, explain why the situation described in this problem cannot
continue indefinitely.

We have ∇ · B = ∂xBx + ∂yBy + ∂zBz0 and since B does not depend on x and
y this means ∂zBz = 0. Subsituting this in the equation from part b. we find that
1
c2
∂2Bz

∂t2
= 2µ0ρω, or ∂2Bz

∂t2
= 2µ0ρ c

2ω. Integrating twice with respect to t, we find that
Bz = µ0ρ c

2ωt2 + c1t + c2, where c1 and c2 are constants of integration. This would
mean that the Bz would grow quadratically with t, for all times. Obviously this cannot
continue forever, since first of all, an infinite amount of energy would be stored in the
B-field and secondly, there would be a linearly (and indefinitely) growing electromotive
force on any horizontal loop. It seems likely that when one tries to maintain the situation,
either the torque available for rotation will eventually be insufficient, or there will be an
electric discharge, changing the charge density on the insulator.
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Ex. 3.2: Plane waves

An electromagnetic wave has an electric field given by

E = E0 cos(kx− ωt) ẑ

a. Write the frequency ν, the wavelength λ, and the velocity c of this wave in terms of
ω and k.

We have λ = 2π
k

, ν = ω
2π

and c = ω
k

.

b. Calculate the frequency of a wave with λ = 510nm (green light). Also calculate the
wavelength of a wave with frequency 88.2MHz (RTÉ radio 1 FM).

We have λν = c ≈ 3.0× 108m/s,
so λ = c/ν ≈ (3.0× 108(m/s)/ν) and ν = c/λ ≈ (3.0× 108(m/s)/λ)Hz.
For green light, this gives ν = (3.0× 108(m/s)/(510× 10−9m) ≈ 5.9× 1014Hz
For RTÉ radio 1, we get λ ≈ (3.0× 108(m/s)/(88.2× 106Hz)) ≈ 3.4m

c. Calculate the B-field of this wave by direct use of the Maxwell equations

We can us the equation for ∇× E to get the time derivative of the B-field. We have

∂B

∂t
= −∇× E

We have, in this case, ∇× E = −(∂xEz) ŷ, so we get

∂B

∂t
= +(∂xEz) ŷ = −kE0 sin(kx− ωt) ŷ

and it follows that, up to a constant, which we would not usually consider part of the
wave’s field,

B = −k
ω
E0 cos(kx− ωt) ŷ = −E0

c
cos(kx− ωt) ŷ

d. Calculate the energy density u and Poynting vector S of this wave.

We have

u =
ε0
2

(
E2 + c2B2

)
=

ε0
2

(
E2

0 cos2(kx− ωt) + c2
E2

0

c2
cos2(kx− ωt)

)
= ε0E

2
0 cos2(kx− ωt)

and

S = ε0c
2 (E×B)

= −ε0c2
E2

0

c
cos2(kx− ωt) ẑ× ŷ

= +ε0cE
2
0 cos2(kx− ωt) x̂
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