
Electricity and Magnetism 2 and Statistical Thermodynamics (MP232)
Assignment 1

Please hand in your solutions no later than Monday, February 22. Late assignments will not be
accepted. If you have questions about this assignment,
please ask your tutor,
Glen Burrella, (glen-dot-burella-at-nuim-dot-ie), Office 1.1, Mathematical Physics,
or your lecturer,
Joost Slingerland, (joost-at-thphys-dot-nuim-dot-ie), Office 1.7D, Mathematical Physics.

Ex. 1.1 Motion of a particle in constant electric and magnetic fields

A particle of charge q and mass m is moving through a constant magnetic field B. We
choose the z-axis along the magnetic field, so that we have B = (0, 0, B), with B = |B|.
The particle has velocity v = (vx, vy, vz).

a. Assume that the only force acting on the particle is due to the magnetic field. Show
that we must have

dvx
dt

=
q

m
Bvy

dvy
dt

= − q

m
Bvx

dvz
dt

= 0

The only force acting on the particle is due to the magnetic field, so it is the Lorentz
force FLor = q(v × B). We then have Ftotal = mdv

dt
= q(v × B) and consequently

dv
dt

= q
m

(v ×B). We can now work out the components of the exterior product (using
B = (0, 0, B)) and then the three components of the equation for dv

dt
turn out to be

precisely the three equations given above.

b. Find the general solution for the velocity v(t) from the equations in part a. From
there, find the general solution for the position r(t) of the particle.

HINT: the general solution of the equation d2f
dt2

= −ω2f is given by f(t) = A sin(ωt)+
B cos(ωt), with A and B arbitrary constants.

First of all we have dvz

dt
= 0, so vz is a constant. Also drz

dt
= vz and hence, using that

vz does not depend on t, we have rz = vzt+ Z, where Z is another constant (Z is the
z-component of the particle’s position at time t = 0). Now take the time derivative of
the equation for dvx

dt
. This gives

d2vx
dt2

=
q

m
B
dvy
dt
,

where we used that q, m and B are constant in time. We now substitute the equation
for dvy

dt
into the right hand side, giving

d2vx
dt2

= −
(
qB

m

)2

vx = −ω2
cvx.
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Here we note the appearance of the cyclotron frequency ωc = qB
m

. We can now apply the
hint to find the general solution for vx. We have vx(t) = A sin(ωct) +B cos(ωct), with
A and B arbitrary constants. We can obviously apply the same trick to the equation
for dvy

dt
to get vy = Ay sin(ωct) + By cos(ωct) with new constants Ay and By. If we

substitute the tentative solutions for vx and vy back into the original equations, we see
that we get

Aωc cos(ωct)−Bωc sin(ωct) = ωcAy sin(ωct) + ωcBy cos(ωct)

Ayωc cos(ωct)−Byωc sin(ωct) = −ωcAsin(ωct)− ωcBcos(ωct)

so that the equations are satisfied for all t precisely if we take Ay = −B and By = A.
Hence the general solution for v is given by

(vx, vy, vz) = (A sin(ωct) +B cos(ωct),−B sin(ωct) + A cos(ωct), vz)

Where vz is constant. Integrating this with respect to t, we get the general solution
for r, which is

(rx, ry, rz) = (−A
ωc

cos(ωct) +
B

ωc
sin(ωct) +X,

B

ωc
cos(ωct) +

A

ωc
sin(ωct) +Y, vzt+Z).

Here X,Y and Z are integration constants which are determined by the initial
position of the particle.

Describe the motion of the particle for the following sets of initial positions and velocities.
Give the centre and radius of the orbit where applicable.

c. v(t = 0) = (u, 0, 0) and r(t = 0) = (0, 0, 0).

From the general solution for the velocity and position of the particle, we see that
v(t = 0) = (B,A, vz) and r(t = 0) = (−A

ωc
+ X, B

ωc
+ Y, Z). Setting these equal to

(u, 0, 0) and (0, 0, 0), we get B = u, A = 0, vz = 0, X = 0, Y = − u
ωc

and Z = 0, so
the orbit is described by the formula

(rx, ry, rz) = (
u

ωc
sin(ωct),

u

ωc
cos(ωct)−

u

ωc
, 0).

Thus the particle describes a circular orbit of radius u
ωc

in the (x, y)-plane, centered on
the point (0,− u

ωc
, 0). Note that u = |v|, so the radius is given by the usual formula for

the cyclotron radius r = m|v|
q|B| .

d. v(t = 0) = (0, u, 0) and r(t = 0) = (0, 0, 0).

In the same way as in part c. we find that B = 0, A = u, vz = 0, X = u
ωc

, Y = 0 and
Z = 0, so the orbit is described by the formula

(rx, ry, rz) = (− u

ωc
cos(ωct) +

u

ωc
,
u

ωc
sin(ωct), 0),

so this time the orbit is again a circle of radius u
ωc

in the (x, y)-plane, but now centered
on the point ( u

ωc
, 0, 0).
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e. v(t = 0) = (0, 0, u) and r(t = 0) = (x, y, 0).

In the same way as in part c. we find that B = 0, A = 0, vz = u, X = x, Y = y and
Z = 0, so the orbit is described by the formula

(rx, ry, rz) = (x, y, ut),

In other words, the particle moves at constant velocity u along a line in the positive z
direction which intersects the (z = 0)-plane at (x, y, 0).

f. v(t = 0) = (u, 0, w) and r(t = 0) = (0, 0, 0). What is the angle θ(t) that the orbit
makes with the magnetic field in this case?

In the same way as in part c. we find that B = u, A = 0, vz = w, X = 0, Y = − u
ωc

and Z = 0, so the orbit is described by the formula

(rx, ry, rz) = (
u

ωc
sin(ωct),

u

ωc
cos(ωct)−

u

ωc
, wt).

So the orbit is a helix radius u
ωc

, centered on the vertical line through (0,− u
ωc
, 0). The

angle θ(t) between the orbit and the magnetic field can be calculated by taking the inner
product between v and B. We have v ·B = |v||B| cos(θ), so θ = arccos( v·B

|v||B|). in this

case v = (u cos(ωct),−u sin(ωct), w) and B = (0, 0, B) so |v| =
√
u2 + w2, |B| = B

and v ·B = wB, so that θ = arccos( w√
u2+w2 ). Note that θ is constant in time and does

not depend on the magnetic field.

We now add an electric field E in addition to the magnetic field and orthogonal to it, say
in the y-direction: E = (0, E, 0) with E = |E|.

g. Derive the equations of motion for the new situation and compare with part a. If
the particle is initially stationary at the origin (r = (0, 0, 0)), describe qualitatively
how it will move away from there. How does the motion depend on the charge q?

The equations of motion are now given by Ftotal = mdv
dt

= q(E + v × B). Working
this out for the given electric field and the same magnetic field as before we get

dvx
dt

=
q

m
Bvy

dvy
dt

=
q

m
E − q

m
Bvx

dvz
dt

= 0

If the particle is initially at rest then, initially, the only force that acts is the force due to
the E field. This will accelerate the particle in the positive y-direction. As soon as the
particle develops a nonzero velocity, the force due to the magnetic field starts to play a
role and the direction of the particle’s motion is changed. Depending on the sign of the
particle’s charge it will be bent away from its motion in the positive y-direction towards
the positive or negative x-direction. For a standard right handed coordinate system,
particles with positive charge will bend toward the positive x-direction and particles with
negative charge towards the negative x-direction. Much more can of course be said
and in fact the equations of motion can be solved exactly (solutions are discussed for
example in the book by Griffiths).
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We now remove the electric field in the y direction and instead add an electric field E
parallel to the magnetic field, in the z-direction: E = (0, 0, E).

h. Derive the equations of motion for the new situation and give the general solution
for the velocity v(t). Give an expression for the angle θ(t) that the orbit makes with
the magnetic field in this case.

Working out the equations of motion as before we get

dvx
dt

=
q

m
Bvy

dvy
dt

= − q

m
Bvx

dvz
dt

=
q

m
E

The equations for vx and vy are the same as in part b. and so the general solution
for those velocity components as well as those position components is the same as
before. For the z-direction, we find by integration that vz = q

m
Et+Vz where Vz is a

constant, and by further integration that rz = q
2m
Et2 +Vzt+Z, where Z is another

constant. We see that the x and y components of the particle’s position still move
in a circle, but the particle is now accelerating in the z-direction. Note that this
does not influence the motion in the other directions, because the Lorentz force due
to the B-field depends only on the coordinates of the velocity perpendicular to the
B-field. We have, as before, that θ = arccos( v·B

|v||B|). In this case

v = (A sin(ωct) +B cos(ωct),−B sin(ωct) + A cos(ωct),
q

m
Et+ Vz)

and as before, B = (0, 0, B) so |v| =
√
A2 +B2 +

(
q
m
Et+ Vz

)2
, |B| = B and

v ·B =
(
q
m
Et+ Vz

)
B, so that

θ = arccos

 q
m
Et+ Vz√

A2 +B2 +
(
q
m
Et+ Vz

)2

 .

Now θ is no longer constant in time. In fact, it decreases with time and approaches
0 as the velocity turns more and more in the vertical direction. However, θ still
does not depend on the magnetic field. (Do not be confused by the B that appears
in the formula for θ - it is a constant unrelated to the magnetic field - unfortunate
notation!)
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Ex. 1.1 The Hall effect

Charged particles of charge q move through a conducting slab of material, called a Hall
bar, giving rise to a current I in the x-direction.

a. Assume that

– the Hall bar has a constant cross sectional area A (orthogonal to the x-direction)

– there is a constant density ρ of moving particles per unit volume

– the particles move with (average) velocity v in the x direction.

Now argue that we must have I = qAρv

The current through a cross section of the bar is the amount of charge Q that passes
that cross section per unit time. For a small time interval ∆t we can write I = Q

∆t
. If

the charged particles move at a speed v then all charges in a block of material of length
v∆t pass through a given cross section during a time ∆t. These are in fact all particles
in a block of material of volume Av∆t. Since the particle density is ρ, the number of
charges in this block is ρAv∆t and since each particle carries charge q, this represents
a total charge Q = qρAv∆t. Finally I = Q

∆t
= qAρv.

We now apply a magnetic field in the direction ortogonal to the current, say B = (0, 0, B).
This gives rise to a Lorentz force on the particles which carry the current and causes their
trajectories to bend in the y-direction. As a result, the density of charge carriers is raised
one side of the Hall bar and lowered on the other side.

b. You are given that the current I flows in the positive x-direction. Now suppose that
q is positive. On which side of the Hall bar will ρ be raised/lowered? And if q is
negative?

Using the right hand rule for the Lorentz force, we see that positive charges are pushed
in the negative y-direction (left in the figure), so for positively charged particles, ρ will
be raised on the left and lowered on the right. For negatively charged particles, we have
to take into account that if the current is in the positive x-direction, this means that
the charge particles are moving in the negative x-direction. Using the right hand rule
with this input (and of course reversing the direction indicated by this rule due to the
negative charge in the force formula qv ×B), we see that negatively charged particles
are also pushed to the left, so the change in the particle density is the same in both
cases. However, note that the effect on the charge density is different!

If the magnetic field is kept in place, an equilibrium charge density profile is reached; the
“excess” of charge carriers on one side and the “shortage” of charge carriers on the other
side cause an electric field EHall = (0, EHall, 0) whose action on the particles compensates
for the force due to the magnetic field.
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c. Show that, in the equilibrium situation, EHall = IB
qAρ

In equilibrium, the total force on the particles is zero, so we must have q(E+v×B) = 0
In the current situation, this means EHall = vB (check the sign for example by the right
hand rule). Using the result of part a. we have v = I

qAρ
and so we get EHall = IB

qAρ
.

d. Many simple devices for measuring the magnetic field are based on the Hall effect1.
Explain how you could measure the magnetic field somewhere in space using a Hall
bar with known shape and material properties. The voltage over the Hall bar in the
directions orthogonal to the current is proportional to the component of the magnetic
field in the direction orthogonal to the direction of the current and the measured voltage.
We can get all components of B for example by rotating the Hall bar or using multiple
Hall bars.

e. In some semiconductors, the current is carried by positively charged “holes” of
charge q = e (rather than electrons of charge q = −e). Can you tell this from the
observed Hall field EHall?

Yes, the direction of the Hall field (at given current I) is different for differently charged
particles. This is of closely related to the answer in part b.

f. We have made a number of extremely crude assumptions and simplifications in this
exercise, mostly implicitly. Give at least two examples of complications that should
be taken into account in a more thorough treatment of the Hall effect.

Some examples: The charge carriers are usually microscopic particles that should be
treated quantum mechanically. They interact with stationary charged and neutral parts
of the medium they move in (metal ions etc.). The particles do not all move at the
same speed, but rather there will be some distribution of speeds. Many materials will
have all kinds of inhomogeneities and impurities which influence the behaviour of the
moving particles, etc. etc. etc.

1Usually one does not measure the electric field but rather the voltage VHall or the resistance RHall

over the width of the bar, but this does not matter for the principle
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