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� Partial solutions or hints for problem set 6 below.

� I don’t always provide pictures, because they are time-intensive to draw
eletronically. However, you (the student) should sketch figures whenever
relevant. Without sketching the situations, you are unlikely to arrive at
correct solutions.

� These hints/solutions have been typed rapidly and have not been carefully
proof-read. Quite likely, there are typographical or other errors. Please use
with caution and check everything!

— x — x — — x — x — — x — x —

1. Two metallic plates are placed parallel and close to each other. They
each have area A. They carry opposite charges +Q and −Q. Such an
arrangement is known as a capacitor.

(a) The plates are large enough that, if we are considering the region
between the two plates (far from the plate edges), we can regard each
charged plate as an infinite sheet of charge. Show that the magnitude
of the electric field in the region between the plates is E = Q/(Aε0).

(Partial) Solution/Hint →

We learned (in class, in an earlier assignment) that an infinite charged
plate with surface charge density σ produces an electric field that is
independent of distance, with magnitude σ/(2ε0). The field points
perpendicularly away from the plate if the charge is positive and
perpendicularly toward the plate if the charge is negative.

In the region between the plates, we regard each charged plate as
infinite, with surface charge density +Q/A on one and −Q/A on the
other. A drawing of the situation will show that the two plates cause
electric fields which point in the SAME direction. Thus the electric
field in the region between the plates is

Q/A

2ε0
+

(Q/A)

2ε0
=

Q

Aε0

— —
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(b) The capacitance of a capacitor is the charge on a plate divided by the
potential difference between the two plates (C = Q/V ). If the distance
between the plates is d, find the capacitance of the arrangement.

(Partial) Solution/Hint →

What is the potential difference between the two plates? Since we
want the difference between two points whose displacement is along
the direction of the electric field, the potential difference is Ed =
Qd/(Aε0), ignoring signs. Hence the capacitance is

Q

V
=

Q

Qd/(Aε0)
=

(Aε0)

d

— —

2. An electron (charge≈ 1.602 × 10−19 C; mass≈ 9.109 × 10−31 kg) moving
at speed 200 m/s finds itself in a region of constant magnetic field.
The magnetic field points perpendicular to the electron velocity and has
strength 10−3 Tesla.

(a) Find the magnitude of the magnetic force experienced by the electron.

(Partial) Solution/Hint →

As the velocity (of magnitude v = 200m/s) is perpendicular to the
magnetic field (of magnitude B = 10−3T), their cross product has
magnitude vB. Hence the force has magnitude

qvB ≈ 1.602× 10−19 × 200× 10−3Newtons = 3.204× 10−20N

Since the input quantities all have SI units, so does the result; we
don’t have to show explicitly that Coul.× T×m/s = Newtons.

— —
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(b) The magnetic force causes cyclotron motion, so that the electron
moves around a circular trajectory. Find the radius of the circular
trajectory.

(Partial) Solution/Hint →

We showed in class that the cyclotron radius is found by equating the
Lorentz (magnetic) force to the centripetal force:

qvB =
mv2

R
=⇒ R =

mv

qB

With the values given, the radius is thus

R ≈ 9.109× 10−31 × 200

1.602× 10−19 × 10−3
m ≈ 1.137× 10−6m

— —

(c) How long does it take for the electron to complete one cycle? (i.e.,
what is the period of the cyclotron motion?)

(Partial) Solution/Hint →

Since the cyclotron radius is R = qB
mv

, the circumference of the
trajectory is S = 2πR = 2πmv/qB.

The time it takes for an electron with speed v to cover distance S is

T =
S

v
=

2πR

v
=

2πm

qB

Plugging in the known values into either of these equations gives

T ≈ 3.57× 10−8s

— —



MP204, Spring 2021, Problem set 06, some solutions page 4

3. Steady current I flows through an infinitely long straight wire placed along
the z azis, from z = −∞ to z = +∞ through the origin.

(a) Sketch a top view of the x-y plane, and show the point P with
coordinates (−4L,−L, 0) and the point Q with coordinates (3L, 2L, 0).
For each of these points, draw the direction of the magnetic field
produced by the steady current I.

(Partial) Solution/Hint →

P

Q

The magnetic field at P should be perpendicular to the line joining
the origin to the point P . The direction is shown with a green arrow.
Similarly for point Q. (No attempt has been made to make the arrow
lengths proportional to the magnitudes of the magnetic field; they
indicate only the directions.)

— —

(b) Calculate the magnitudes of the magnetic field created at those two
points (P and Q).

(Partial) Solution/Hint →

The point P has distance
√

(−4L)2 + (−L)2 =
√

17L from the
origin, i.e., from the current-carrying wire. Hence, the magnetic field
magnitude at this point is

µ0I

2π
√

17L
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The point Q has distance
√

(3L)2 + (2L)2 =
√

13L from the origin,
i.e., from the current-carrying wire. Hence, the magnetic field
magnitude at this point is

µ0I

2π
√

13L

— —

(c) At the point Q(3L, 2L, 0), find the x-, y-, and z- components of the
magnetic field. (Sketching a top view of the x-y plane might help.)

(Partial) Solution/Hint →

Let θ be the angle made by the line joining the origin with Q, as
also shown in the figure. Consideration of the figure should show that
components of the magnetic field at Q are

Bx = −B sin θ By = B cos θ Bz = 0

If this is not entirely clear, you might want to draw a line through the
point Q parallel to the y axis, and identify which two lines meet at Q
with angle θ between them.

Now from the geometry

sin θ =
2L√
13L

=
2√
13

and cos θ =
3L√
13L

=
3√
13

so that, using the expression for B derived previously,

Bx = − µ0I

2π
√

13L

2√
13

= − µ0I

13πL

By = +
µ0I

2π
√

13L

3√
13

= +
3µ0I

26πL

Bz = 0

— —
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(d) Now consider a point (3L, 2L, z0), not necessarily on the x-y plane.
What is the magnitude of the magnetic field at this point? What are
the x-, y-, and z- components of the magnetic field at this point?

(Partial) Solution/Hint →

This point is at the same distance from the infinite wire and in the
same direction, just vertically displaced. Hence the magnetic field at
this point (and the components) will be exactly the same as at Q.

This problem requires some 3D thinking. If the solution is not
perfectly clear, I suggest drawing the situation from different angles
until you have a mental picture of the location of the points and the
directions of magnetic fields.

— —
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4. A particle having mass m and charge q is subjected to uniform electric and
magnetic fields, both pointing in the z direction: E = E0k̂, B = B0k̂.

At time t = 0, the particle is at the origin and has velocity v = vî.

(a) At which times does the particle pass through the z axis?

(Partial) Solution/Hint →

The magnetic field causes the particle to perform cyclotron motion in
the direction perpendicular to the z axis, i.e., parallel to the x-y plane.
Meanwhile, the electric field causes the particle to be accelerated in
the z direction. The physical insight necessary here is that motion in
the x-y plane is decoupled to motion in the z direction.

The trajectory of the particle is spiral-like. It is not a regular helix,
because the velocity in the z direction increases and is not constant.
In other words, the turns of the spiral are not equally spaced.

The particle will hit the z-axis once every cyclotron motion. Since
this is perpendicular to the z direction, we can ignore the electric field
for calculating the time it takes to complete one cyclotron cycle, and
focus only on the x-y part of the motion.

For the cyclotron (x-y) part of the motion, the cyclotron radius is
R = mv/qB0, so that the period of the cyclotron motion is T =
2πR/v = 2πm/qB0.

Thus the particle returns to the z axis at times

T =
2πm

qB0

, 2T =
2πm

qB0

, 3T =
2πm

qB0

, ....

i.e., at times nT = n2πm
qB0

, where n is any positive integer.

— —
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(b) What are the z values where the trajectory meets the z axis?

(Partial) Solution/Hint →

We now turn to the motion in the z direction. The particle has
constant acceleration in this direction:

F = qE0 =⇒ a =
qE0

m

So, the z-coordinate of the particle at time t is

z =
1

2
at2 =

qE0

2m
t2

as there is no initial velocity in this direction.

Therefore, the z values where the trajectory meets the z axis are

0,
qE0

2m
T 2 =

qE0

2m

(
2πm

qB0

)2

,

qE0

2m
(2T )2 =

qE0

2m

(
4πm

qB0

)2

,

qE0

2m
(3T )2 =

qE0

2m

(
6πm

qB0

)2

,

qE0

2m
(4T )2 =

qE0

2m

(
8πm

qB0

)2

, . . .

i.e.,
qE0

2m
(nT )2 =

qE0

2m

(
2nπm

qB0

)2

=
2n2π2mE0

qB2
0

where n is zero or a positive integer.

— —
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5. A particle with charge Q and mass m is placed in a region with uniform
electric field in the y-direction, E = Eĵ, and uniform magnetic field in the
z direction, B = Bk̂. The particle position coordinates are x, y, z, and its
velocity components are denoted as vx, vy, vz.

(a) Calculate the force F. Write out separately the expressions for its
components, Fx, Fy, Fz. (These expressions will involve the quantities
Q, B, E, vx, and vy.)

(Partial) Solution/Hint →

The force is

F = QE +Qv ×B = QEĵ +QBv × k̂

In terms of components:

Fx = QBvy

Fy = QE −QBvx
Fz = 0

— —

(b) Using your results for Fx, Fy and Newton’s 2nd law, F = mdv
dt

,

calculate expressions for
dvx
dt

and
dvy
dt

. You should thus obtain coupled

first-order differential equations for vx(t) and vy(t).

(Partial) Solution/Hint →

Using
dvx
dt

= 1
m
Fx and

dvy
dt

= 1
m
Fy, and the expressions obtained

previously for Fx and Fy,

dvx
dt

=
QB

m
vy

dvy
dt

=
QE

m
− QB

m
vx

— —



MP204, Spring 2021, Problem set 06, some solutions page 10

(c) If the particle starts at rest, i.e., if the initial conditions are vx(0) =
vy(0) = 0, then the solutions to the above equations are of the form

vx =
E

B
− E

B
cos(ωt) vy =

E

B
sin(ωt) (1)

Substituting these into your first differential equation, find an expres-
sion for ω. Substituting these into your second differential equation,
show that you find the same expression for ω.

(Partial) Solution/Hint →

Substituting the solution form into the first differential equation gives

0− E

B
(−ω) sin(ωt) =

QB

m

E

B
sin(ωt) =⇒ ω =

QB

m

— —

(d) The equations (1) are themselves differential equations for x(t) and
y(t), since vx = dx

dt
and vy = dy

dt
. Assume that the particle starts at

the origin, so that the initial conditions are x(0) = y(0) = 0. Find the
solutions for x(t) and y(t).

(Partial) Solution/Hint →

First x(t):

dx

dt
= vx =

E

B
− E

B
cos(ωt)

=⇒ x(t) =
E

B
t− E

Bω
sin(ωt) + const.

Since x(0) = 0, the constant is zero:

x(t) =
E

B
t− E

Bω
sin(ωt) =

E

B
t− Em

QB2
sin(ωt)

Now for y(t):

dy

dt
= vy =

E

B
sin(ωt) =⇒ y(t) = − E

Bω
cos(ωt) + const.

Since y(0) = 0, the constant is found to be E/(Bω). Thus

y(t) = − E

Bω
cos(ωt) +

E

Bω
=

E

Bω

[
1− cos(ωt)

]
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— —

(e) Sketch x(t) as a function of t and y(t) as a function of t. Sketch the
trajectiory of the particle in the x-y plane.

(Partial) Solution/Hint →

The x coordinate has dependence E
B
t − E

Bω
sin(ωt) on time, which

meanst it is linearly increasing on average with oscillations at fre-
quency omega on top of the linear increase. This is shown in the
figure below.

x(t) y(t)

t t

The y coordinate has dependence E
Bω

[1− cos(ωt)] on time, which is
simply a trigonometric oscillation shifted from zero. The function
1 − cos(u) oscillates is between 0 and 2, starting at 2. Hence the
function y(t) oscillates between 0 and E

Bω
. This is also shown in the

figure above.

As for the trajectory, one can see physically that the particle will move
first in the y direction due the the E-field and be forced to turn around
due to the B-field, but before it continues the full cyclotron path (due
to B-field) it is stopped by the E-field, and then the whole motion
starts again. The result is a series of semicircles, as shown below.

x

y
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Of course, the trajectory is consistent with the x(t) and y(t) functions
described/ derived above: x(t) increases with some oscillations around
its linear increase while y(t) oscillates.

— —
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6. Two infinite straight wires are placed parallel to each other, at a distance
of 5 meters from each other. Each carries a current of 0.2 Amperes.

(a) Look up and report the value of µ0 (permeability of free space) in SI
units. Also calculate µ0/π.

(Partial) Solution/Hint →

µ0 = 4π × 10−7N/A2 so that µ0/π = 4× 10−7N/A2

— —

(b) If the currents in the two wires are in the same direction, calculate the
magnitude of the magnetic field at a point halfway between the two
wires.

(Partial) Solution/Hint →

A carefully drawn figure will show that, midway between the wires,
the magnetic fields due to the two wires cancel each other out. B = 0.

— —

(c) If the currents in the two wires are in opposite directions, calculate
the magnitude of the magnetic field at a point halfway between the
two wires.

(Partial) Solution/Hint →

A carefully drawn figure will show that, midway between the wires,
the magnetic fields due to the two wires are equal and point in the
same direction. Each wire creates field of strength

µ0I

2πd
=
µ0

π

I

2d
= 4× 10−7 × 0.2

2(5/2)
Tesla = 1.6× 10−8T

Thus the total magnetic field has magnitude

B = 3.2× 10−8T
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— —

7. The magnetic field in some region is given by

B =
µ0

π

(
Cy

x2 + y2
î+

2x

x2 + y2
ĵ

)
.

Use one of Maxwell’s equations to determine the constant C.

(Partial) Solution/Hint →

The divergence of B is

∇ ·B =
∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z

=
∂

∂x

(
µ0

π

Cy

x2 + y2

)
+

∂

∂y

(
µ0

π

2x

x2 + y2

)
=

µ0

π

[
Cy × −2x

(x2 + y2)2
+ 2x× −2y

(x2 + y2)2

]
= −µ0

π

2xy

(x2 + y2)2
(C+2)

Maxwell’s second equation demands ∇ ·B = 0, so that

C + 2 = 0 =⇒ C = −2

— —
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8. (a) A long straight wire carrying steady current 0.4 Amperes is placed
on the x-y plane, passes through the origin, and makes an angle of
30◦ = π/6 with the x-axis. The region is subjected to a uniform
magnetic field of B = (10−2T )ĵ, pointing in the y-direction. What is
the force experienced by a segment of the wire of length 0.8m? Give
both the magnitude and the direction of the force.

(Partial) Solution/Hint →

Please do make a drawing of the situation before attempting this
problem. A sketch is very essential for figuring out the directions.

The force on an element dl of the wire is

dF = Idl×B

Since the wire and hence dl makes angle 30◦ = π/6 with the x-axis,
the angle with the magnetic field (in the y direction) is 60◦ = π/3.
Hence the cross product has magnitude

dlB sin(π/3) =

√
3

2
Bdl

and points in the positive z or the negative z direction, depending on
the direction of the current.

We see that dF = 1
2
IBdl does not depend on the location of the

element on the wire. Hence the magnitude of total force on a segment
of length L of the wire is

F =

√
3

2
IBL

For the particular values given,

F =

√
3

2
× 0.4× 10−2 × 0.8Newtons ≈ 2.77× 10−3N

The direction of the force is in the positive z or the negative z direction,
depending on the direction of the current.

— —
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(b) A long straight wire carrying steady current I1 runs along the y axis:
The current flows from y = −∞ to y = +∞. The region is subjected
to a magnetic field of B = λy2k̂, pointing in the z-direction. Find
the force experienced by the segment of the wire between y = L and
y = 2L.

(Note that the magnetic field is not uniform. Here λ is a positive
constant.)

(Partial) Solution/Hint →

A sketch, e.g., of the x-y plane or the y-z plane, should help understand
the directions mentioned below. (If you do not draw sketches, there
is little chance of solving such a problem correctly.)

The force on an element dl of the wire is

dF = I1dl×B

Since the current and hence dl is in the positive y direction and the
field is in the positive z direction, the force will be in the positive x
direction (ĵ × k̂ = î). Also

dl×B = dyĵ × λy2k̂ = λy2dyî

Thus the magnitude of the total force on the segment is

F = I1

∫ 2L

L

λy2dy = I1λ

∫ 2L

L

y2dy = I1λ

(
(2L)3

3
− (L)3

3

)
=

7

3
I1λL

3

and this force points in the positive positive x direction:

F =
7

3
I1λL

3î

— —


