
MP204

Electricity and Magnetism

2017–2018, practice exam 1

Time allowed: 2 hours

Answer ALL questions

This is a SAMPLE exam, roughly reflecting the general
structure of the MP204 exams for 2017 – 2018.

Remember that ALL questions are to be answered.

If any figures are relevant, please include them with your solution! Sketching
appropriate pictures often helps you arrive at the correct solution.
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1. (a) An infinitely long charged cylinder has radius R and uniform charge
density ρ. Use Gauss’s dielectric flux theorem to calculate the electric
field inside the cylinder, at a distance r < R from its axis. If you use
any assumptions based on symmetry, state them clearly.

[14 marks]

(b) A solid metallic sphere has radius R, and carries a total charge Q.
The metal is an excellent conductor.

In which part of the sphere is the charge located?

Write expressions for the electric field magnitude at a distance r from
the center of the sphere, both inside the sphere (r < R) and outside
the sphere (r > R).

Sketch a plot of the electric field magnitude as a function of the
distance r from the center of the sphere. Your plot should run from
r = 0 to r = 2R.

Write expressions for the electric potential as a function of r, both
inside and outside the sphere.

Sketch a plot of the electric potential as a function of r.

[16 marks]
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2. (a) Current I flows through a rectangular wire loop. The loop has two
sides of length L and two sides of length 2L.

Using the Biot-Savart law, calculate the magnetic field created by the
current at the center of the loop.

Possibly useful integral:∫
du

(u2 + a2)3/2
=

u

a2(u2 + a2)1/2

[23 marks]

(b) An infinite wire carrying current I1 runs along the y axis; the current
flows from y = −∞ to y = +∞ through the origin. A square loop lies
in the xy plane, with the four corners having coordinates (x0, y0),
(x0 + L, y0), (x0 + L, y0 + L), and (x0, y0 + L). Current I2 flows
counterclockwise through the square loop.

Calculate the total force acting on the square loop due to the current
in the long wire.

Reminders: (1) An infinitely long straight wire carrying current I1

produces a magnetic field of strength µ0I1/(2πd) at a point at distance
d from the wire. (2) A magnetic field B perpendicular to a straight
wire segment of length L carrying current I2 exerts a force I2LB on
the wire segment.

[12 marks]
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3. (a) The vector potential in some region is given by

A =
(
−λz

2

)
ĵ +

(
λ
y

2

)
k̂

Find the magnetic field B.

Consider adding ∇f to the vector potential, where f is any scalar
function. Explain how the magnetic field changes due to this
transformation.

Write down or derive a vector potential, different from the one above,
which corresponds to the same magnetic field.

[11 marks]

(b) Due to the current through a long solenoid of radius R, the magnetic
field inside the solenoid is increasing,

B = βt,

while the field outside the solenoid is zero. Here β is a positive
constant.

Use Faraday’s law in integral form to calculate the induced electric
field as a function of the distance r from the axis of the solenoid, both
inside and outside the solenoid.

[16 marks]

(c) An electromagnetic system is described by the fields

E = K0x sin(ωt)ĵ B =
K0

ω
cos(ωt)k̂

Calculate the displacement current density JD.

Use Maxwell’s equations to calculate the current density J.

[8 marks]
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Posssibly useful Equations

� Electrostatics: E = −∇V ; VPQ = −
∫ P
Q
E · dl

Electric potential at r due to a point charge q1 at r1: V =
q1

4πε0

1

|r− r1|

Gauss’ law:

∮
Σ

E · dS =
Qenclosed

ε0

� Magnetostatics: Ampere’s law:

∫
C

B · dl = µ0Ienclosed

Biot-Savart law: dB =

(
µ0I

4π

) dl′ ×
(
r̂− r′

)
|r− r′|2

� Force on a charge: F = qE + qv ×B

Magnitic force on a current element: dF = Idl×B

� Fields from potentials: E = −∇V − ∂A

∂t
, B = ∇×A

� The continuity equation: ∇ · J +
∂ρ

∂t
= 0

� Maxwell’s Equations:

1O ∇ · E =
ρ

ε0
2O ∇ ·B = 0

3O ∇× E = − ∂B

∂t

4O ∇×B = µ0J + µ0ε0
∂E

∂t
= µ0 (J + JD)

� Poynting vector: S = 1
µ0
E×B Speed of light: c = 1/

√
µ0ε0

Energy density of electromagnetic fields: u =
1

2
ε0E

2 +
1

2µ0

B2


