Introduction to differential equations Il: overview

e Linear first-order differential equations
e Method of variation of parameters

e Solutions by substitutions

e Bernoulli equation

e Reduction to separation of variables

Optional material: error function, exact DE, homogeneous functions



Linear equations

A differential equation that is of the first degree in the dependent variable and all its
derivatives is said to be linear.

Definition: Linear equation
A first-order differential equation of the form
d\'
ay(x) -+ ap(x)y = g(x) (4)
is said to be linear.

If g(x) = 0 the linear equation is said to be homogeneous, otherwise it is nonho-
mogeneous.



Standard form

By dividing both sides of (4) by a;(x) we get the standard form of a linear equation

j—‘ + POy = f(¥) (5)
X

We seek a solution of the equation above on an interval I for which both functions P
and f are continuous.



The property

The DE (5) has the property that its solution is the sum of two solutions, y = y. + yp,
where y. is the solution of the associated homogeneous equation

=2 P(x)y =0 (6)
dx
and y, is a particular solution of the nonhomogeneous equation (5). To see this
9ty + P e+ 3] = | 2+ ooy + |22 + PGy, | = 0+ £ = i
dr [..\c + }'p] + P(x) [.\'c + }'p] “dx + P(x)ye| + e + P(x)yp| =0+ f(x) = f(x)

The homogeneous equation (6) is also separable, so we can find y. by integrating it

- f P(x)dx

y(. = e = C}.’ 1

We now use the fact that dy /dx + P(x)y = 0 to determine y,,.



The procedure: Variation of parameters

f Pi(x)dx

Idea: to find a function u so that y, = u(x)y(x) = u(x)e” is a solution of (5).

Substituting y, = uy; into the equation gives

dy de
uﬁ + V] d—: + P(x)uy; = f(x)
DLy Py [+ 915 = f)
w1 oyi[+vge = S

and since y; is the solution of the homogeneous equation, the expression in the
square bracket is zero and

du ,
Yige = f(x)



Separating variables and integrating then gives

G A AC),

du =
v1(x) yi(x)

dx

Since yi(x) = e~ J PO 1y (x) = o) POx and therefore

Yp = Uuyp = ( Uc d..\:) e~ ) POdx _ o= [ P(x)dx f el PO £ (x)dx

vi(x)




and the solution of (5) is then of the form

Y =Ye+yp=ce f Px)dx o o= f P(x)dx f ef P(x)dx f(x)dx

There is an equivalent but easier way of solving (5). If the equation above is multiplied
by e/ P¥4x and differentiated we get

ef P(..\")dxy = c+ f e f P(x)dx F(x)dx

di o P(..r)dx},‘ _ o PWdx gy
X

ej‘ P(I’)d\% + P(x)ef P(\)d\v — Ef P(X)d.\'j‘(x)
Dividing the result by e P()dx gives (5).



Method of solving a linear first-order equation

(i) Put a linear equation of form (4) into the standard form

dy Pl = F
i (x)y = f(x)

and then determine P(x) and the integrating factor e P

(i) Multiply the equation in its standard form by the integrating factor. The left side of
the resulting equation is automatically the derivative of the integrating factor and y:
write
d
dx
and then integrate both sides of this equation.

o P(x)d.r}_,l = of Pdx 4y




Example:

g—‘ -3y=6
X
The equation is already in the standard form. Since P(x) = -3, the integrating factor

is e/ (=34x _ ,~3x By multiplying the equation by the integrating factor, we get

dy i .
8—3..‘_.\ . 38_31}-’ — 68—33
dx
which is the same as
d =3x.| _ £.-3x
i [e _\] = be
Integrating both sides of the equation yields e >*y = —2¢>* + ¢, so the solution is
y= -2+ ce*

for —co < x < co. Note that the DE above is autonomous (ap, a; and g are constants)
and it has one unstable critical point at y = 2.



Constant of integration
Considering the constant of integration in evaluation of the integrating factor o] P(odx.
that is writting o] Px + ¢ i unnecessary as the integrating factor multiplies both
sides of the differential equation.

Singular points

The recasting the linear equation (4) in the standard form (5) requires division by
ay(x). Values of x for which the a;(x) = 0 are called singular points. They are
potentially troublesome: if P(x) formed by dividing ap(x) by a;(x) is discontinuous at
a point, the discontinuity may carry over to solutions of the DE.



General solution

Recall that the functions P(x) and f(x) in (5) are continuous on a common interval /.
Also, if (5) has a solution on I it must be of the form

Y= Yo+ yp = ce" [Peydx , - [ P(x)dx f o PO £ 1y

Conversely any function of this form is a solution of (5) on I. In other words, the
solution above defines a one-parameter family of solutions of equation (5) and every
solution of (5) defined on I is of this form. It is hence the general solution.



Now writing (5) in the normal form y = F(x,y), we see that F(x,y) = —P(x)y + f(x)
and dF/dy = —P(x). These must be continuous on the entire interval I because of
the continuity of P(x) and f(x).

From the uniqueness theorem we conclude that there exists one and only one solu-
tion of the initial value problem

dy -
1, TPy =1(x), - y(xo) = yo

defined on some interval I containing xy and that this interval of existence and
unigueness is the entire interval 1.



Example: General solution

dV 6 x
x— — 4y = x ¢e"
rdx y=xe
The standard from
dv
dy 4 Sex
dx X

from which P(x) = —4/x, f(x) = v ¢~ and both are continuous on (0, ). The inte-
grating factor is then

— " —4ln v -4 .
e 4 [dx/x _ oy _ ™t -4

We multiply the standard form by x~# and integrate by parts

_ady
X g

dx
The general solution defined on (0, o) is then y = re¥ - xte +ex’

Ay = xe* — e + ¢

-~ d .
—4x 5..\' =xe' = dx [x 4_\’] =xe* = x
X



Example: General solution

dy
(.r2—9)—‘"+.xjv = 0
dx
dy X
= — + y = 0
dx x2-9

Thus P(x) = x/(xz —9). Although it is continuous on (—co, —3), (=3, 3), and (3, ), we
will solve it at the first and the third interval on which the integrating factor is

oS xdx/(0F=9) _ 172 [2xdx/(x*=9) _ ,1/2In|x*-9| _ [ 2 _g

After multiplying the standard form by the integrating factor and integrating we get
di Va? - 9.\" =0 = Vx2-9y=c¢
X

thus for either x < —3 or x > 3, the general solution is y = ¢/ Vx2 - 9.




Example: An IVP

dy
— + y =X, y((}) =4
dx

P(x) = 1, f(x) = x are continuous on (—oco, c0). The integrating factor is ef dx _ er,
and so integrating

d X — X

d.r [C’ -\] = Xe

gives e'y = xe" — e* + ¢. The general solution is theny = x— 1 + ce” . From the initial
condition, y(0) = 4 we obtain the value of the integrating constant ¢ = 5, and thus the

solution of our IVP is

y=x-1+5"" —co<x<oo



The general solution of every linear first order DE is a sum, y = y. + y),, of the
solution of the associated homogeneous equation (6) and a particular solution of the
nonhomogeneous equation.

In the example above, y. = ce™" and y, = x — 1.

Observe that as x gets large, the graphs of all members of the family get close to the
graph of y,, as y. becomes negligible.

We say y. = ce™ " is a transient term since y. — 0 as x — oco.




.\?

Example: A discontinuous f(x) 4+

-

dy

d_:r +y= f(x) T

where f(x) =1for0 < x <1, and f(x) = 0 for x > 1; the initial condition is y(0) = 0.

We solve the problem in two intervals over which f is defined. For 0 < x < I:

dy d . . c
— + = — | = ? .
dx ) dx [e ) ] ¢

wegety=1+cje " andsince y(0) =0we havec;y = -1,andsoy=1—-¢"".



For x > 1 the equation

—+y=0
dx Y
leads to the solution y = coe™*. So the solution in both intervals is
1= if0<x< 1
Y= cre”r ifx> 1.

In order for y to be continuous, we want lim,_, 1+ y(x) = y(1), that is, cpe™! = 1 — ¢7!

or co = e — 1. The function

| 1=¢* if0<x<1;
Y= e=De™™ ifx> 1. y

is continuous on (0, o).

——




Solutions by substitutions

We first transform a given differential equation

dy . =
I f(x,y)
by means of substitution y = g(x, «) into another differential equation
dy du
I gx(x, u) + gu(x, u)a

| du
fx g w) = gelx ) + gulxu)—

where we assumed that g(x, u) possesses the first partialﬂderivatives, so we could
apply the chain rule.

The last equation above can be reformulated as du/dx = F(x,u). If we can find its
solution u = ¢(x), then a solution of the original equation is y = g(x, ¢(x)).



Bernoulli equation

is a special type of first-order ODE which can be reduced to linear form and then
solved by the method for linear ODE:

dv
d—: + M(x)y = N(x)y" (7)

where n is any real number.

It can be transformed into the linear form as follows:

l—n

u=y = u=yy"

= y=Y'u

Differentiating this gives

du _pdy
o (1 = n)y dx



or

dy _ (20 )du
dx  \1-n/dx

Substituting this into the Bernoulli equation (7) gives

v\ du
' — + M(x)y" u = N(x) "
I —n/dx . .

Dividing by y" and multiplying by (1 — n) gives

W e (1= M@ = (1 - HN)
dx

which is a linear ODE with P(x) = (1 — n)M(x) and f(x) = (1 — n)N(x).



Example: A Bernoulli equation

dy 1 | 4
S Iy = 2(1 =20y
TR S )

wheren =4, M(x) = 1/3, and N(x) = (1 — 2x)/3. Using the transformation

U= yl—n — },—3
we obtain the linear ODE
% +(l —n)M(x)u = (1 —-n)N(x)
X
du
= —-u = (2x-1)
dx

whose solution is u(x) = ce* — (2x + 1); the solution of the original equation is then
y=1/|ce* = (2x+ 1)]”3.



Reduction to separation of variables

A differential equation of the form

dy
d—'—f(A1+B\+C)

can always be reduced to an equation with separable variables by means of the
substituition u = Ax + By + C.

Example: An IVP

dy
— = (- 2x+v) -7, v(0) =10
dx

Let u = —2x + y, then du/dx
separable equation

-2 + dy/dx and so the DE is transformed into a

du+2 . ) du_ 2 _g
P = u? 0 ix u-



The transformed equation can be solved using the partial fractions

du 1| 1 |
=d or - - du = d:
w-3yu+3 6|u-3 u+3] e
| u—3 u-3 6x+6¢]
= 6ln 3 =X+ or u+3-e

After solving the last equation for u and then resubstituting we get

3(1 + ceb%) 3(1 + ce®%)
= or y=2x+ =

u = ,
1 — ceb* ' I —ce

and by applying the initial condition we get ¢ = —1
3(1 — %%
1 + 6%

y=2x+




OPTIONAL

Functions defined by integrals

Integrals of functions, which do not possess indefinite integrals that are elementary
functions, are called nonelementary.

Error function

erf(x) = %\fo e-'zdt

Complementary error function

2 o 2
erfe(x) = ﬁ f e dt
X

Since 2/ \/J_Tj(‘)m e_'zdt =1,erf(x)+erfec(x)=1. Also erf(0) = 0.



OPTIONAL

Example: The error function

dy
—=2xy=2, y0)=1
dx

2

The integrating factor is ¢, and so from
d
dx
From the initial value we get ¢ = 1 and thus the solution of the IVP is

“

2 2 2 (Y 2 2
e " _\-“ =2e¢ = y=2e" e " dt + ce’
0

2 (Y2 2 2
y = 28"'“[ e dt + " = ¢ [1 + erf(x)]
0

X

J
7/
W




OPTIONAL

Exact equations

A differential expression M(x,y)dx + N(x, y)dy is an exact differential in a region R
of the xy-plane if it corresponds to the differential of some function f(x,y), i.e.

I I
df = ia'x + id}'
dx ay

A first order differential equation of the form

M(x,v)dx + N(x,y)dy =0

is said to be an exact equation if the expression on the |. h. s. is an exact differential.

Example: x2y3dx + x>y2dy = 0 is exact as d(x>y/3) = x*y3dx + x> y2dy.



OPTIONAL

Theorem: Criterion for an exact differential

Let M(x,y) and N(x,y) be continuous and have continuous first partial derivatives in
the region R defined by @ < x < b and ¢ < y < d. Then a necessary and sufficient
condition that M(x, y)dx + N(x, y)dy be an exact differential is

OM(x,y) ON(x,y)
(9_\-‘ B (9,7(‘

Proof:

dy dy\dx) odx\ady 0x

oM i(@_j) 0 ((?f) dN



OPTIONAL

Example: Solution of an exact equation

2xydx + (x% - dy =0

M(x,y) = 2xy and N(x,y) = X2 -1, we get dM/dy = 2x = ON/dx, so the equation is
exact and there exist a function f(x,y) such that

0 f 0 f
9 =2xy or o =x’ -1
0x ' ay

Integrating the first equation gives

f(xy) = 2%y + g0)



OPTIONAL

By taking now the partial derivative w.r.t. y we obtain

of

A _x‘?’ + g’(-\.*) — _},‘2 -1
ay

from which it follows that ¢’(y) = —1 and g(y) = —y.

Hence f(x,y) = x“y — y, and so the solution of the equation in implicit form is
2
Xy—=y=¢

The explicit solution is y = ¢/(x* — 1) and is defined on any interval not containing

x = =+l.



OPTIONAL

Homogeneous equations

A first-order DE in differential form
M(x,y)dx + N(x,y)dy =0

is said to be homogeneous if both coefficients M and N are homogeneous func-
tions of the same degree «, i.e.

M(tx,ty) = t“M(x,y) N(tx, ty) = t“N(x,y)

Introducing u = y/x and v = x/y, we can rewrite the coefficients as

M(x,y) = x*M(1, u) N(x,y) = xX*N(1, u)
M(x,y) = y*M(v,1) N(x,y) = y*N(v, 1)



OPTIONAL

Either of the substitutions above, vy = ux or x = vy, will reduce a homogeneous
equation to a separable first order ODE:

!
-

M(x,y)dx + N(x, y)dy
=  x'M(lL,uydx+ xX*N(1,u)dy = 0
=  M(l,udx+ N(l,uydy = 0

By substituting the differential dy = udx + xdu, we get a separable DE in the variables
uand x:

M(1,u)dx + N(1,u) [udx + xdu] = 0

[M(1,u) + uN(l,u)]dx + xN(l,u)du = 0
dx N(1,u) du

X * M(1,u)+u N(1,u)

=



OPTIONAL

Example: Solving a homogeneous DE

(.x2 + }'2) dx + (\72 - x_v) dy=10

The coefficients M(x,y) = x* + y* and N(x, y) = x> — xy are homogeneous functions
of the degree 2. Let y = ux, then dy = udx + xdu, and the given DE becomes

(.rz K uzxz) dx + (xz - uxz) [udx + xdu] = 0
.1'2(1 + u)dx + .r3(l —uw)du = 0

L X
| + u X

-1 + 2 du+£=0
| +u X




OPTIONAL

2
| +u

d_’ .
du+ =0
X

-1+

After integration, and transformation back to the original variables, we get

'

\
l +=|+1In|x| = In|c|
X

V
—u+2In|l + ul + In|x| = In|c| = —=+2In
X

Using the properties of logarithms, the solution can be written as (x + y)% = cxe¥/*.



Intuitive interpretation of a linear ODE

d
o+ POy = f()
X

The function f(x) often represents some controllable quantity, such as a force or an
applied voltage, which can be interpreted as the input to the system. Within this
interpretation, we can view the dependent variable y(x) as an output or as an effect
which is produced in response to the input(s).

In the general solution of the linear ODE

y — e_fP(X)dxfefP(X)dxf(.X)dx + ce—fp(x)dx

the first term can be viewed as the system response to the input f(x) and the second
term as the influence of the initial state of the system.



Modelling an RC-circuit

A resistor of resistance R is connected in series with a capacitor of capacitance C
and a source of electromotive force in the form of an applied voltage, V(r). When the
circuit is closed, a current i(¢) will flow through it.

According to the Kirchhoff second law with this circuit, the voltage drops at the ca-
pacitor and resistor equal the applied voltage:

Ve + Ve = V(1)
where Vg = Ri and V¢ = ¢/C = [ idt/C. Thus we get

Ri+éfidt=V(t) R
')




Let us differentiate w.r.t. r and divide by R, to get

di 1, 1dv
dd RC R di

This equation has the form which is the standard form of the linear equation where
P(t) = 1/RC and f(1r) = (1/R)dV(t)/dt. The integrating factor is then

1 t
gf redl — oRC

so the general solution becomes

i(1) = ¢ RC lfeR_erV(I)dz 4 c)
R dt




Case 1: V(1) = constant
In this case we get % = ( and so

- -
i(1) = ce RC

The current in this case decays with time eventually approaching zero



Case 2: V(1) = Vysin(wt)
Substituting this into the general form of the solution we get

(1 .
1) = e_RlC (1_2 feRIC Vow cos(wt)dt + c)

Integrating by parts and using trigonometric relations gives

Lt VoC .
i() = ce RC + —2X0% _[cos(wr) + wRC sin(wi)]
| + (wRC)?
.t wVpC :
= ce RC — sin(wt — ¢)
\/1 + (wRC)?

where tan(¢) = —1/wRC.
The response involves two terms: an exponential decay and steady st%te response
to oscillating external voltage, oscillating with w and the amplitude “’\/—‘—;

I +(wRC)?



