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Definition: Differential Equation

An equation containing the derivatives of one or more dependent variables, with
respect to one or more independent variables, is said to be a differential equation
(DE):
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Classification of differential equations
(a) Classification by Type:

Ordinary differential equations - ODE

d?y dy
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Partial differential equations - PDE

27 2
a“u o-u ) au

ox: o2 ot




(b) Classification by Order:

The order of the differential equation is the order of the highest derivative in the
equation.
Example:

nth-order ODE:

F (r .y y™) =0 (1)

Normal form of (1)
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(c) Classification as Linear or Non-linear:

An nth-order ODE (1) is said to be linear if it can be written in this form

dy n—1,,
a,,(r)— +a,_ l(r)

dy
e l + ...+ al(.r)a + ap(x)y = g(x)

Examples:
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Solution of an ODE:

Any function ¢ defined on an interval I and possessing at least n derivatives that
are continuous on I, which when substituted into an n-th-order ordinary differential
equation reduces the equation to an identity, is said to be a solution of the equation
on the interval.

In other words:
a solution of an nth-order ODE is a function ¢ that possesses at least n derivatives
and

F(x,¢(x),¢"(x),....6"(x)) = 0 (2)

for all x € 1. Alternatively we can denote the solution as y(x).



Interval of definition:

A solution of an ODE has to be considered simultaneously with the interval I which
we call

the interval of definition
the interval of existence,
the interval of validity, or
the domain of the solution.

It can be an open interval (a,b), a closed interval [a, b], an infinite interval (a, co)
and so on.



Example:

Verify that the function y = xe* is a solution of the differential equation
y"" —=2y" +y =0 on the interval (—oo, 00):

From the derivatives

y = xe'+e*
v/ = xe' +2e"
we see
Lh.s. : V' =2y +y=(xe* +2e*) =2 (xe* + ")+ xe* =0

r.h.s. : 0

that each side of the equation is the same for every real number x.

A solution that is identically zero on an interval 1, i.e. y = 0,¥x € [, is said to be
trivial.
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Solution curve:

is the graph of a solution ¢ of an ODE.

The graph of the solution ¢ is NOT the same as the graph of the functions ¢ as
the domain of the function ¢ does not need to be the same as the interval I of defini-

tion (domain) of the solution ¢.

Example:

(2) Function y = 1/xx#0 (b) Solution y = 1/x, (0, =)
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Explicit solutions:

a solution in which the dependent variable is expressed solely in terms of the in-
dependent variable and constants.

Example:

2
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}, - (p(x) -— (’01 X
is an explicit solution of the ODE
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Implicit solutions:

A relation G(x,y) = 0 is said to be an implicit solution of an ODE on an interval
I provided there exists at least one function ¢ that satisfies the relation as well as the

differential equation on 1. “5’:%
Example: «L

3 i ?
2 2 1
x° +y° =25 T
(a) Implicit solution
. . . . . x24+y2=25
is an implicit solution of the ODE "
.
5
dy «x
dx y :_5.::::'4_.:54.:5.:.\-
on the interval (-5, 5). MR NE
) 3 2 L ¥ =Y¥25-x2, -5<x<5
Notice that also x~ + v~ — ¢ = 0 satisfies the ODE above. .
5-

(¢) Explicit solution

= N25-x2, 5<x<5



Families of solutions:
A solution ¢ of a first-order ODE F(x,y,y") = 0 can be referred to as an integral of

the equation, and its graph is called an integral curve.

A solution containing an arbitrary constant (an integration constant) ¢ represents
a set

G(x,y,c) =0
called a one-parameter family of solutions.

When solving an nth-order ODE F(x,y,y’,...y"™) = 0, we seek an n-parameter
family of solutions G(x, y,cy,c2,...,cpn) = 0.

A single ODE can possess an infinite number of solutions!



A particular solution:
is a solution of an ODE that is free of arbitrary parameters.
Example:
. - . ’ r N
y = cx — xcos x is an explicit solution of xy" — y = x“sinx on (—oco, c0).

The solution y = —xcos x is a particular solution corresponding to ¢ = 0.
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A singular solution:

a solution that can not be obtained by specializing any of the parameters in the
family of solutions.

Example:
y = (x2/4 + ¢)* is a one-parameter family of solutions of the DOE dy/dx = xy!/2.

Also y = 0 is a solution of this ODE but it is not a member of the family above.
It is a singular solution.



The general solution:

If every solution of an nth-order ODE F(x, y,’,...,¥"”) = 0 on an interval I can be
obtained from an n-parameter family G(x, y, ¢y, ca, ..., ) = 0 by appropriate choices
of the parameters ¢;, i = 1,2, ..., n we then say that the family is the general solution
of the differential equation.



Systems of differential equation:

A system of ordinary differential equations is two or more equations involving
the derivatives of two or more unknown functions of a single independent variable.

Example:
dx :
— — I"‘.)
& [, x,y)
Y2 etny
a - &OH)

A solution of a system, such as above, is a pair of differentiable functions x = ¢(r)
and y = ¢»(1) defined on a common interval I that satisfy each equation of the system
on this interval.



Initial value problem:

On some interval I containing x, the problem of solving

dny ’ |
—=f R ,(,n))
d-\‘" . (X, Y,V 500y \

subject to the conditions

’ -1
Y(x0) =0, ¥ (x0) = y1s e ¥V (x0) = Vi

where yg, v1, ... , ¥, are arbitrarily specified constants, is called
an initial value problem (IVP).

The conditions y(xg) = yg, ¥ (xg) = ¥1. ... ¥ V(xg) = y,_ are called
initial conditions.



y

First-order and Second-order IVPs:

solutions of the DE

\?
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dx
y(xp)
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v(xp)

f(x,y)
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Example:
y = ce” is a one-parameter family of solutions of the first order ODE y’ = y on the
interval (—co, c0). !

The initial condition y(0) = 3 determines the constant c:

w0)=3= ce’ = ¢

Thus the function y = 3¢ is a solution of the IVP defined by

vVi=y, y(0)=3

Similarly, the initial condition y(1) = -2 will yield ¢ = —2¢~!. The function y = —2¢*~!
is a solution of the IVP

Y=y, yl)=-2



Existence and uniqueness:
Does a solution of the problem exist? If a solution exist, is it unique?

Existence (for the IVP (3)):
Does the differential equation dy/dx = f(x, y) possess solutions?
Do any of the solution curves pass through the point (xg,vg) ?

Uniqueness (for the IVP (3)):
When can we be certain that there is precisely one solution curve passing through
the point (xp, vo) ?



Example: An IVP can have several solutions
Each of the functions

y =0

y = 16
satisfy the IVP

dy ‘

_} = X}al"’?“

v(0) = 0




Theorem: Existence of a unique solution

Let R be a rectangular region in the xy-plane defined by a < x < b, ¢ < vy < d,
that contains the point (xq, yg) in its interior. If f(x,y) and df/dy are continuous on R,
then there exist some interval Iy: xg —h < x < xg+ h, h > 0, contained ina < x < b,
and a unique function y(x) defined on I, that is a solution of the initial value problem

(3). y
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Distinguish the following three sets on the real x-axis:

the domain of the function y(x);
the interval I over which the solution y(x) is defined or exists;
the interval [, of existence AND uniqueness.

The theorem above gives no indication of the sizes of the intervals I and Iy; the
number h > 0 that defines I could be very small. Thus we should think that the
solution y(x) is unique in a local sense, that is near the point (xp, vp)-
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Example: uniqgueness
Consider again the ODE

dy 14
"
in the light of the theorem above. The functions
flx,y) = xy'/?
af  x

are continuous in the upper half-plane defined by v > 0.

The theorem allow us to conclude that through any point (xg, vg), vo > 0, in the
upper half-plane, there is an interval centered at x(, on which the ODE has a unique
solution.
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Mathematical model

is the mathematical descriptions of a system or a phenomenon. Construction:

- identifying variables, including specifying the level of resolution;

- making a set of reasonable assumptions or hypotheses about the system, includ-
ing empirical laws that are applicable; these often involve a rate of change of one or
more variables and thus differential equation.

- trying to solve the model, and if possible, verifying, improving: increasing resolu-
tion, making alternative assumptions etc.

A mathematical model of a physical system will often involve time. A solution of the
model then gives the state of the system, the values of the dependent variable(s),
at a time t, allowing us to describe the system in the past, present and future.



Express assumptions in terms
of differential equation

If necessary,

alter assumptions Solve the DEs
or increase resolution

of the model

Display model predictions,
e.g. graphically



Examples of ordinary differential equations

(1) Spring-mass problem

Newton's law
P dv d?x
=mdad=m-—-—=m—
dr dr?
Hook’s law
F = -kx

By putting these two laws together we get the desired ODE

dz,.f
—; + w?‘x = 0
dr-

where we introduced the angular frequency of oscillation w = Vk/m.
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(2) RLC circuit

i(t) - the current in a circuit at time ¢ (}{jo(m |

g(1) - the charge on the capacitor at time t E) L g R
L - inductance

C - capacitance
R - resistance i

A
A —

According to Kirchhoff’'s second law, the impressed voltage E(r) must equal to
the sum of the voltage drops in the loop.

Vi + Ve + Ve = E(1)



Inductor

Capacitor

Resistor

RLC circuit

iy i
VC_%
VR=Ri=R%
L%+R3—?+éq=E(I)
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First-order differential equations

To find either explicit or implicit solution, we need to

(i) recognize the kind of differential equation, and then

(ii) apply to it an equation-specific method of solution.



Separable variables
Solution by integration

The differential equation

dy

i g(x)

is the simplest ODE. It can be solved by integration:

y(x) = f g(x)dx =G(x)+c

where G(x) is an indefinite integral of g(x).



Example:

d\' Iy
— =1+
dx

has the solution

y = f(l + ez"') dx = %ez"' + X+ c.

This ODE and its method of solution is a special case when [ is a product of a
function of x and a function of y.



Definition: Separable equation

A first-order differential equation of the form

dy — o(x)
dx g(x)h(y)

is said to be separable or to have separable variables.



Method of solution:

A one parameter family of solutions, usually given implicitly, is obtained by first rewrit-
ing the equation in the form

pdy = g(x)dx

where p(y) = 1/h(y), and integrating both sides of the equation. We get the solution
in the form

HO) = G(x) + ¢

where H(y) = f p(y)dy and G(x) = f g(x)dx and c is the combined constant of
integration.



Example: A separable ODE

Solve

(1 +x)dy—-vdx=10
Dividing by (1 + x)y we get dy/y = dx/(1 + x) and can integrate

dy f dx
y l +x

Inly] = In|l + x|+ ¢
Jnll+xl+er _ n[l+x] e

y =
= |1 + x| e!

= 1 (1+x)=c(l +x)



Example: Solution curve

Solve the initial value problem

oo X =3
dx  y’ PAIS

By rewriting the equation as ydy = —xdx, we get

f vdy = - f xdx

,,
X~

— = —— 4+

2 2

We can rewrite the result as x* + y* = ¢2, where ¢ = 2¢;. This family of solutions
represents a family of concerning circles centered at the origin. The IVP determines

the circle x* + y* = 25 with radius 5.




Losing a solution

Some care should be exercised when separating variables, since the variable divi-
sors could be zero at a point.

If r is a zero of h(y), then substituting v = r into dy/dx = g(x)h(y) makes both sides
zero, i.e. y = r is a constant solution of the DE.

This solution, which is a singular solution, can be missed in the course of the solving
the ODE.



Example:
Solve

dx
We put the equation into the following form by using partial fractions

dy [ 1/4 1/4
}Q-4._ y—2 y+2

‘dy==dx

and integrate

1 1

Zlnl\’—2|—11n|_\’+2|=.7('+C|
22 = 44 c
ny+2 =4xX+ C?

y—2 Ayt
. — E4.r+c 2
y+2



We substitute ¢ = ¢“2 and get the one-parameter family of solutions

I + ce*

y=2 »
1 — ce™

Actually, if we factor the r.h.s. of the ODE as

dy
2 = (-2 +2)
dx

we see that y = 2 and vy = -2 are two constant (equilibrium solutions). The earlier is
a member of the family of solutions defined above corresponding to ¢ = 0. However
y = =2 is a singular solution and in this example it was lost in the course of the
solution process.



Example: an IVP

Solve
dy .
L2y Voo
08 =y = g 2x. (0) =0
cos x(e ))d.x e’ sin2x,  y(0)
By dividing the equation we get
2y _ v -
€ ' ) dy = sin 2x Jx
el COS X

We use the trigonometric identity sin 2x = 2 sin x cos X on r.h.s. and integrate

f (e"—)-'e_-‘")dy = 2 f sin xdx

e +ve? +e? = =2cosx+c

The initial condition y(0) = 0 implies ¢ = 4, so we get the solution of the IVP



Example: an IVP

Solve

. dy L
COS X (e?‘-‘ - _v) i = ¢e'sin2x, y(0)=0

By dividing the equation we get

-y P sin 2x
—day =
ey COS X

We use the trigonometric identity sin2x = 2'sin x cos x on .h.s. and integrate

f (e"—_}'e_-"')d_v = 2 f sin xdx

e + ye_-'v +e ¥ = =2cosx+c

dx

The initial condition y(0) = 0 implies ¢ = 4, so we get the solution of the IVP
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