Recurrence relations = Difference equations

Sometimes adjacent terms of a sequence are related to each other. For example,
the terms of the sequence {x;} = {2X} are such that x;.| = 2¥*! = 2 x 2K = 2x;. That

IS
Xk+1 = 2x

The equation holds for all adjacent terms of the sequence - we say it recurs for all
values of k.

The equation is called a linear, first order, constant coefficient recurrence rela-
tion.

Example: a recurrence relation of the second order

Xk+2 = X1 — X =1



Initial terms

A recurrence relation can be used to generate the terms of a sequence provided
initial terms are given - equal in number to the order of the equation.

Example 1:
Given the sequence {x;} where x;,1 = 3x; with the initial term xg = 2 generates the
sequence

{xi} =12,6,18,54,...}
Since x;,1 = 3x;, where xg = 3 gives

X1 = 3x9=3%X2=6

x» = 3x1=3%x6=18

x3 = 3xp=3x%x18=54



Example 2:
Similarly , if another sequence has terms that satisfy the second-order recurrence

relation

Xk+2 = X1 + 2x = 1
where xo = 0 and x; = 1 then the first five terms of the sequence are

(x;}=1{0,1,4,11,26,...)

Because

X2—=3x1+2x9g = x»—-3x1+2x0=1 = x=4

x3 —3xp + 2x1 x3—-3X4+2%x1=1 = x3=11

X4—3x3+2x) = x4-3X11+2%x4=1 = x4=26



Example 3:

Xk+2 — X = 1
where xp = 0 and x; = —1.

X2 —Xp) = x2—0:1 =
X3 — X1 = X3—(—1)=1 =
X4—xp = x4—1=1 =
xs—x3 = x5—0=1 =

Therefore

{x}=10,-1,1,0,2,1,.. .}

xy =1
x3=0
X4 =2
X5=1



Solving the recurrence relation

If a sequence {x;} satisfies a recurrence relation with given initial conditions then the
general term of the sequence can be found by using the Z transform where Z {x;} =
F(z).

Example 4:
Solve the recurrence relation

Xk+2 = X1 + 2x5 = 1
where xp = 0 and x; = 1.

Since this recurrence relation is true for all values of k it can itself be used to form a
sequence {y;}, namely

Wi} = k2 = 3xp41 + 20} = {1}



Now taking the Z transform of both sides of this equation gives

Z vk} = THxpa2 — 3xp41 + 24} = Z {1}
Z{xpa2) = 3Z {xks1} + 22 {xi} = ZH{1}

Using the first shift theorem and Z {x;} = F(z) and the initial conditions xy = 0 and
x1 = 1, this becomes

R B en) 3G = £
(ZzF(Z) _ z) -3 (zF(2)) +2F(2) = %1
(Zz—3z+2)F(Z)—Z = z—il

R Fz) = 2 andso & .

(z—1)2(z—-2) z (z-1*(z-2)



Now we perform the partial fraction decomposition of @:

F(z) Z A B C
T T @ 12@-2) @12 -1 72
A=)+ B(z-1)(z-2)+C(z-1)?
B (z- DXz -2)
and so z = A(z—2) + B(z - 1)(z - 2) + C(z - 1)? giving
kﬁ: B+C=0
2'1:  A-3B-20=1
°]: -24+2B+C=0
with solution A = -1, B = -2 and C = 2. Therefore
F(z) 1 2 2

= — - +
4 z-12 z-1 z-2



Now we take the inverse Z transform:

F(2) 1 2 2
- = — — +
Z z-12 z-1 z-2
2 2
F (Z) _ < < <

DT REE

— - Z - -

Z lF(Z) = -Z 1((2_1)2) 2Z (Z—1)+2Z (2_2)
= |-k -20% +202")

= Lk—2+2“%

Indeed {x;} = {—k —2+ 2"”} is the solution to the recurrence relation.



Verifying the solution:

X2 = IXjy1 + 2k

= (—lk+2] =2+ 282D 3 (k4 1] - 24+ WD) o (- 2 4 24
= (-k—4+8x2)-3(-k-3+4x2)+2(-k-2+2x2)

= —k-4+8x25+3k+9-12x2" -2k -4 +4x 2

=1



Example 5:
Solve the second-order recurrence relation

Xk+2 — X = 1

where xp = 0 and x; = —1.

Taking the Z transform of the equation gives

Z{xps2 — x} = Z{1)
Z{xkn} = Z i) = Z {1}
(zzF(z) — zzxo — le) - F(z) = z—il



Substituting for xg = 0 and x; = —1 gives

(ZZF(Z) + z) - F(z) = il

(zz— 1)F(z)+z= =

z—1
Z Z
F(z) = —
&= 2 ey @-1
F(z) 1 1

2 @-DeE-1 (Z-1)
1 1

T @t D12 @+ Dhe-1)
-7+ 2

T @+ DE- 1)




We now perform the partial fraction decomposition
F(z) —7+2

Z (z+ D(z—1)?
A B C

+ +

z+1) (z-1) (z-1)>2

Az-1D?*+Bz+D)iz-1D+Ciz+1)
(z+ Dz -1)2

Equating numerators and comparing coefficients of powers of z gives

(%] : A+B=0
[2']: _2A+C=-1
1 A-B+C=2

with solution A = 3/4, B=-3/4and C = 1/2.



By inverting the transform

3 7 3 z 1 z

FO=3avD 3= "2 12

we obtain the final solution:

ZF@) = —Z_ {Zil}_gz {z—il}%z_l{(z—zl)z}

— Z{(—l)k} {1"} + = 1

) = {<1>—§+§}

o = k/2 k even
k=1 k-3)/2 k odd

so that



Sampling

If a continuous function f(¢) of time ¢ progresses from ¢t = 0 onwards and is measured
at every time interval T, then the result is a sequence of values

UKT)} = {£Q0), f(T), f2T), f(3T), .. )

A new piecewise continuous function f*(¢) can be created from the sequence of
sampled values such that

otherwise

F40) = { g(kT) if +=kT

The graph of this new function A
consists of a series of spikes ()
at regular intervals r = kT.
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The function can alternatively be described in terms of the delta function 6(¢) as
@) = f(O)@) + f(T)s(t—T)+ fQRT)6(t —2T) + fBT)6(t —3T) + ...

= Z F(KT)S(t — kT)
k=0

The Laplace transform is then given as
Fi(s) = L{f 0}
= f (FOO)6() + f(T)6(t—T) + fQRT)6(t —=2T) +...} e ' dt
0
= £0) + (DT + f@T)e™>T + f3T)e 3T + ...

— Zf(kT)e—kST
k=0



Define a new variable z = ¢5T and we see that

LiF®) = Zf(kT) 2 3 6D

kOZ

which is the Z transform of the sequence {f(kT)}.



Example 1:
The function f(¢) = e~% is sampled every interval T. Calculate the Z-transform of the
sampled function.

Defining f*(t) = £2, f(kT) 6(t — kT) = £ e T &(t — kT), then the Laplace
transform of f*(¢) is given as
F*(S) — Z e—akT e—kST
k=0
and thus the Z transform of { f(kT)} is

o e—kaT 1

<
F(Z) = = =
Z k —aTl _ ,—aT

Notice that this agrees with the Z transform of the sequence {bk}, which is Z_ib when
b is replaced by ¢! .



Example 2:
The function f(r) = t is sampled every interval T. The Z transform of the sampled
function { f(kT)} = {kT} is

(0]

— f(kT) kT
Z k :Z_k

k=0 < k=0 <
(1 2 3 )
= T|l-+5+—5+...
72

F(2)

< Z
T

= —(1+2z_1+3z_2+4z_3+...)
Z

2

d 1 -
= —-Tz—|(1+ +
Zdz( Z Z

—1 -2
d 1 T 1 T
dz Z Z

+z_3+...)




Example 3:
The function f(¢) = cost is sampled every interval of T. We first rewrite

it | =it
f(t) = cost= %
ikT . ,—~ikT
FUT) = e +e
2
The Z transform of {e %7} is F(z) = z—eZ_aT' Therefore the Z transform of the sampled

function {cos kT} is

T e \_1|rle=el)ra(z-e)
F(z) = 2\ il + Z_eiT) ) (z—e_iT) (Z—eiT)
~ 1l ZZZ—Z(eiT+e_iT) _ zz-cosT)
B §¥z2—(eiT+e"‘T)z+l C2-2zcosT + 1




