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1. This Question Is Compulsory

(a) [12 marks] If ~a = −4̂− 2k̂, ~b = ı̂− k̂ and ~c = 2ı̂+ ̂+ k̂, obtain the following:

(i) ~a ·~b,
(ii) ~c×~b,
(iii) [̂× (~b× k̂)] · ~a,
(iv) 2(~c · ~a)̂+ 3~a.

(b) [3 marks] Find the point at which the line ~r(t) = (1 + 2t)̂ı + 2t̂ − tk̂ (where t is a real
number) and the plane x− 2y + z = 7 intersect.

(c) [8 marks] Find the following Laplace transform and inverse Laplace transform:

(i) L
[
e−2t

(
2t2 + t

)]
,

(ii) L−1
[

3s− 2

s2 + 9

]
.

(d) [8 marks] For the two matrices

A =

(
3 2
−1 1

)
, B =

 5 0
0 −2
−8 3

 ,

Find (i) BA, (ii) AT, (iii) BT and (iv) A(BT).

(e) [6 marks] Find the determinant and trace of the matrix 5 0 1
0 1 0
2 7 −3

 .

(f) [6 marks] Solve the following system of simultaneous equations using the inverse matrix
method:

x+ 2y = 2, −x+ y = 0.

(g) [7 marks] Find the characteristic equation for the matrix

M =

(
2 −3
1 −2

)
.

and use it to compute M−1.
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2. (a) [10 marks] Solve the following differential equation using Laplace transforms:

dy

dt
− 2y = 3 sinh(2t)

where y(0) = 0.

(b) [15 marks] Find the eigenvalues of the matrix 4 0 6
0 −3 0
4 0 2


and determine their associated eigenvectors.

3. (a) [10 marks] Find the line of intersection, expressed in parametric form, between the planes
x+ y + z = 1 and x− 2z = 0.

(b) [15 marks] Using any method you like, find the inverse of the matrix 1 2 5
0 −1 2
2 4 9

 .

4. (a) [12 marks] A particular circuit has three resistors such that the currents I1, I2 and I3
passing through them satisfy the equations

2I1 + I2 = −4,

I1 − I2 + I3 = 0,

2I1 − 2I3 = 8.

Find I1, I2 and I3 using Gauss-Jordan elimination.

(b) [13 marks] Consider the curve is given by

~r(t) = sin3(t)̂ı− cos3(t)k̂,

for 0 ≤ t ≤ π/2. Find the total arc length of this curve.
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USEFUL FORMULAE

Vectors

~A×
(
~B × ~C

)
=

(
~A · ~C

)
~B −

(
~A · ~B

)
~C

curvature: κ =

∣∣dû
dt

∣∣
|~u|

principal unit normal vector: N̂ =
dû
dt∣∣dû
dt

∣∣
arc length between t1 and t2: s =

∫ t2

t1

|~u(t)| dt

Laplace Transforms

Table of Laplace Transforms

f(t) = L−1[F (s)] F (s) = L[f(t)]

tn n!
sn+1

eat 1
s−a

cos(ωt) s
s2+ω2

sin(ωt) ω
s2+ω2

cosh(at) s
s2−a2

sinh(at) a
s2−a2

Laplace Transform Theorems

L [af(t) + bg(t)] = aL [f(t)] + bL [g(t)] ,

L
[
eatf(t)

]
= F (s− a),

L [f(at)] =
1

a
F
(s
a

)
,

L [f ′(t)] = sF (s)− f(0),

L [f ′′(t)] = s2F (s)− sf(0)− f ′(0),

L

[∫ t

0

f(τ) dτ

]
=

1

s
F (s).

In all of the above, n = 0, 1, 2, . . . and ω, a and b are constants.
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