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7 DMatrices and Basic Operations

Here we will examine a number of important operations on matrices. These being the
transpose, the trace and the determinant of a matrix.

7.1 Operation: Transpose

Definition 7.1 (Transpose).

Given an m x n matrix A the transpose of the matrix A is the matrix, denoted, AT,
whose consecutive rows are made up of the consecutive columns of A.Thus A" will be a
n X m matrix. We can write this more compactly, if

(ag;-) = (aj;) for alli,j.

Example 7.1.1 (Transpose).

()

7.1.1 Properties of the transpose

Given the matrices A, B, and a scalar k then the following are true
(i) The transpose of the transpose (iii) Factoring scalars

(A7) =A (kA)T = kAT

(ii) The transpose of a sum is the sum of (iv) The transpose of a product
the transposes
(AB)" =BTAT
(A+B)  =AT+B'




e N
Note 7.1 (Transpose of a product of more than two matrices).
Notice that from our properties of the transpose

(AB)" =B"AT.

More specifically that the order of the product is reversed and that this implies that
(AB)" # ATB". What if we wanted to take the transpose of a product of three matrices?
In such a case we have

(ABC)' =C'BTAT
The order is once again reversed. This can be shown without too much difficulty as

(ABC)' = (A(BC))' = (BC)'AT=C'B"AT

7.1.2 Type of matrix: Symmetric

Definition 7.2 (A symmetric matrix).
A matrix A is said to be symmetric if it satisfies all of the following properties

e The matrix is square.
e The matrix is equal to its transpose.

More compactly a matrix is symmetric if

A=A"

Example 7.1.2 (Symmetric matrices).

A= ( il), 2 ) has transpose A’ = ( Zl)) 3 ) hence A is symmetric.

—15 2 3 —15 2 3
B = 2 8§ —17 has transpose B! = 2 8§ —17 hence B is symmetric.
3 —17 2 3 —17 2



7.1.3 Type of matrix: Skew-symmetric

Definition 7.3 (A Skew-symmetric matrix).
A matrix A is said to be Skew-symmetric or antisymmetric if it satisfies all of the following
properties

e The matrix is square.
e The matrix is equal to -1 times its transpose.

More compactly a matrix is Skew-symmetric if

A=—-AT

Example 7.1.3 (Skew-symmetric matrices).

A= ( 0 =2 ) has transpose A' = ( 0 g ) hence A is Skew-symmetric.

2 0 -2
0 22 -9 0 —22 9

B=| —-22 0 —-12 has transpose BT = 22 0 12 hence B is Skew-symmetric.
9 12 0 -9 —-12 0

[ Notice that a skew-symmetric matrix always has a zeros along its main diagonal. }

7.1.4 Type of matrices: Complex, Hermitian and Skew-Hermitian

Definition 7.4 (Complex matrix).
A complex matrix A is a matrix which can have complex number elements.

Example 7.1.4 (Complex matrices).



Definition 7.5 (Hermitian matrix).
A complex matrix A is a Hermitian matrix if it satisfies all of the following properties

e The matrix is square.
e The transpose of A is made up of the complex conjugate of A.
More compactly a matrix is Hermitian if
A=A

where - denotes complex conjugate.

Example 7.1.5 (Hermitian matrices).

4= ( (Z) _0Z ) thus 2" = < _Oz 6 ) and Z' =7 . Z is Hermitian.

12 2 4 12 2+ 4
Y=| 2+i -3 1+V2 thus Y = 2—¢ -3 1-2
4 1—+/2 1 4 1++2 1

Since Y' =Y we can say Y is Hermitian.

p
Note 7.2.
Notice that a matrix can only be Hermitian if it has real number elements on its main
diagonal. The Hermitian property requires elements on the main diagonal to be their
own complex conjugate, which can only occur with the elements on the main diagonal
are real numbers.

Definition 7.6 (Skew-Hermitian matrix).
A complex matrix A is a Hermitian matrix if it satisfies all of the following properties

e The matrix is square.
e The transpose of A is made up of -1 times the complex conjugate of A.
More compactly a matrix is Hermitian if
A=-A

where - denotes complex conjugate.




Example 7.1.6 (Hermitian matrices).

Z = 0 ) 1f7’ now 7' = 0. _1._2 and
—-1—q 7 1—2 7

2:( 0 ) 1+.Z) hence Z' = -7
147 —i

. 7Z is Skew-Hermitian.

Note 7.3.

Notice that a matrix can only be skew-Hermitian if the elements on its main diagonal
are complex numbers or zero.

7.2 Operation: trace

Definition 7.7 (The trace).

The trace of a square matrix A of order n is the sum of the elements on the main diagonal.
More compactly,

TI'(A) = zn: (077
=1

where a;; is the it"-row i*"-column element of A.

-

The trace takes a matrix and returns a scalar result.
.

Example 7.2.1 (trace).

Given the matrix

1 5 12
A= -1 -8 1
05 7 4

The trace is found by summing the elements on the main diagonal.

thus,




7.2.1 Properties of the trace




7.3 Type of matrices: upper triangular, lower triangular and
diagonal matrices.

Definition 7.8 (A lower triangular matrix).

A square matrix is said to be a lower triangular matriz if all the elements above the main
diagonal of the square matrix are all zero.

i 0 0 - 0

log lya O 0

L= Ils1 I3 Is3 0
lnl ln2 ln3 trt lnn

Example 7.3.1. Examples of lower triangular matrices

0
0 10
0 and C:<12)

2

0 —
0
10

N = ONI-
S O W o
o O O

1

e}
—_

Definition 7.9 (An upper triangular matrix).

A square matrix is said to be an upper triangular matriz if all the elements below the
main diagonal of the square matrix are all zero.

Uy Uz U13 -+ Ulp

0 uge wugz -+ Uy

U=| 0 0 wus - wusy
0 : :

0 0 0 - U

Example 7.3.2 (Examples of upper triangular matrices).

10 3
A=101 2 B:<88)
0 0 0.25



Definition 7.10 (An diagonal matrix).
A square matrix is said to be a diagonal matrix if it is both upper and lower triangular

di; 0 O --- 0
0 dypy O --- 0
D 0 0 dsg --- 0
0 o,k
0O 0 0 -+ du,

Example 7.3.3 (Examples of upper triangular matrices).

20 0
A=101 0 B:(gg)
0 0 -1

7.4 Operation: Determinant

Earlier in the course, we introduced the determinant of a matrix as a means of finding
the cross product between vectors. We have already seen that the determinant of a 222
matrix

is defined as

Formula 7.1.

det(M,) = @ Z‘ = ad — be.
and for a 323 matrix
Ay Ay Ag
Ms= | By By Bj
Cy Oy Cy
The determinant is defined as
Formula 7.2.
Ay Ay Az
By B B; B B; B
det(Mg) = Bl 32 B3 = Al 02 03 — A2 Cl 03 4 Ag Cl 02
Cl 02 03 2 3 1 3 2

10



It will transpire that the determinant of a matrix is a rather powerful function when it
comes to solving linear systems of equations. Due to this, we will here spend some time
examining the process of finding the determinant of a matrix more formally.

7.4.1 Cofactor expansion of the determinant

In order to find the determinant of a matrix that is of order larger than three we can
employ what is called a cofactor expansion across any row or any column of a given matrix.

Definition 7.11 (The Minor of a matrix entry). Given the square matrix A, the minor
of the entry in the i"*-row and j* column denoted

M;;

is the determinant of the submatrix formed by deleting the i*-row and j** column from

A.

Example 7.4.1. Take for example the following matrix

1 3 4
A=105 -1 2
2 4 0

To find the Minor of 2"%-row 1%*-column entry, we require

m 34

3 4
My =det (M W M| =det = (3)(0) — (4)(4) = —16.
e (40) (3)(0) = (4)(4)

To find the Minor Mss we have

1 M 4
1 4
My =det |05 W 2| = det = (1)(2) — (4)(0.5) = 0.
. mm <o.5 2)

Each of the entries of the matrix A has a minor associated with it.

11



Definition 7.12 (The Cofactor of a matrix entry). Given the square matrix A, the
Cofactor of the entry in the i**-row and j** column denoted

is given by
Cyj = (=1)™ My

where M;; is the minor of the i"-row, j* column element of the matrix A.

Lets revisit our previous example and find some of its cofactors.

Example 7.4.2. Starting with the matrix

1 3 4
A=|05 -1 2
2 4 0

To find the cofactor of its 2"%-row 3"%-column element, Cys, for example, we first require
the elements minor,

1 3 m
13

Moz =det (M B W | =det = (1)(4) — (3)(2) = —2.

2 4 m (2 4)

Now we can find the cofactor for this element, from our definition of the cofactor we have
Ciyj = (1) My
for the 2"-row 3"¢-column element we have
Coz = (—1)*P Moz = (—1)°(-2) = 2.
To find another cofactor we repeat this same process, take for example
Co = (—1)*"* Moy
earlier we had found the Mss = 0, thus,

Cy = (—1)*(0) = 0.

We are now in a position to find the determinant of a general n x n matrix.

12



any row or column of the matrix A. That is

det (A) = Z a;;Ci; expansion about the i'"-row
j=1
det (A) = Z a;;Ci; expansion about the j-column

=1

where a;; is the i""-row j'"-column element of A and C;; is the cofactor associated with
Q.

The determinant of a matrix A can be found by performing a cofactor expansion about

Example 7.4.3. Given

A:

— 3 N
Ut O =
W W

We can evaluate the determinant of A by performing a cofactor expansion about the
first row.

det(A) = a11C11 + a12C12 + a13C13
=2C; +4C1, + 7C13

We need the cofactors for each of the elements on the first row, which involve the minors
of the matrix elements

HE RN 0 3
"5 3

our next cofactor

H EN 6 3
1 | 3

Cio = (=1)*2Myy = —15.

the final cofactor we need is C3

|
M13 = det 6
1

ao i
EEN

6 0
—det(1 5)—30

Clg - (-1)1+3M13 - 30

13



returning to our cofactor expansion we have

det(A) = 2011 + 4012 + 7013
= 2(—15) + 4(15) + 7(30) = 120.

We could have found this determinant had we been a little more clever with our cofactor
expansion. Since we are free to expand about any row or column it would take less work
to expand about a row or column that has zero entries. As an illustration look at a
cofactor expansion about the second column

det(A) = a12C12 + a2C2 + a13C3
= (4)C12 + (0)Chz + (5)Cso

We only need to work out 2 cofactors using this expansion!

M12 = det 6 W 3 = det (? g) = —15
1 B 3
Clo = (=1)"*2 My = —15.
and
2 B 7 9 7
H EH N

032 - (—1)3+2M32 - 36

returning to our expansion for the determinant we have

which is what we had found earlier.

Note 7.4. When asked to obtain the determinant of a 3 x 3 or larger matrix, it is
advantageous to choose a row or column which has the most zero entries.

14



Example 7.4.4 (a 4 x 4 determinant).

Find the determinant of

2 47 -1

2 03 4
B= 1 58 1

0 00 -10

Solution:

We can find the determinant of this matrix by performing a cofactor expansion about
any row or column. The choice that leads to the least amount of computation is the 4th
row as it contains three zero entries. This is a little better than expanding about the
second column with contains two zeros.

The determinant expanded about the 4th row is given by

det(B) = by1Ca1 + b42Cy2 + bs3C43 + basCuy
=0C4y +0C +0Cy3 + (—10) Cu
= —10Cyy

all we require is a single cofactor Cy. To find this we require the minor, My,

2 4 7 -1 2 4 7 N 9 4 7
2 0 3 4 2 0 3 nm

My, = det 1558 1 = det 1 5 3 m = det ?(5)2
00 0 —10 | BN BN BN |

This is still a 3 x 3 determinant which requires its own cofactor expansion! (expanding
about the 2nd row)

2 4 7 W4 7 2 W7 2 4 N
det [2 0 3] =2(—1)*"'det ([ W B | +0(—1)>Pdet ([l B B | +3(-1)*Pdet ([l H N
1538 5 3 1 m 8 1 5 .

4 7 2 7 2 4
= —2det (5 8)+Odet (1 8)—3det (1 5)——12.

We now have M,y = —12 for the matrix B. The cofactor
Cy = (1) My = —12
from our cofactor expansion about the 4th row of matrix B we have

det(B) = —10Cy, = (—10)(—12) = 120.

Note 7.5. Had we decided to cofactor expand the determinant of B across the first row
we would have had to compute four 3 x 3 determinants!

15



7.4.2 Properties of the determinant

We have seen that getting the determinant of a matrix can be a time consuming pro-
cess, however there are a number of important properties concerning the determinant of
a matrix that can sometimes reduce the amount of work that is needed to compute a
determinant.

The determinant of the Identity matrix is always equal to 1, regardless of the size
of the identity matrix.

Example 7.4.5.

1000
L 00 0100
001 0001

Given two matrices A and B such that all the entries in B are identical to all the entries of
A except for one row of entries where the entries are a constant ¢ times the corresponding
entries in A, then

det(B) = cdet(A)

Example 7.4.6. Given the matrices

1 2 4 -1 1 2 4 -1
3 05 7 0 6 1 14 0
A=1_1 9 095 o0 and B=1 1 o (o0 |
3 4 5 -3 3 4 5 -3

and that the det(A) = —30. Find det(B).

Solution:
In this problem we are given that the determinant

det(A) = —30 check this for yourself!.

Since the matrix B is identical to A except for the entries in one of its rows, all the
entries on the second row of B are equal to 2 times the corresponding entries of A. We
can use our shortcut to state that

det(B) = 2 x det(A) = —60.

16



The determinant of a product of square matrices is equal to the product of the
determinants. That is, given A and B which are both square and of the same order,

det(AB) = det(A) x det(B)

Example 7.4.7. Given the matrices

2 3 0 5
A—(l 4) and B(4 7)

Show that det(AB) = det(A) x det(B).

Solution:
We have

det(A)
det(B)

(2)4) = (3)(1) =5
(0)(7) = (5)(4) = =20

this tells us that det(A)det(B) = —100
We also want the determinant of AB

2 3\ (0 5 12 31
AB = (1 4) (4 7) - (16 33)

12 31
16 33

det(AB) = det ( ) = (12)(33) — (31)(16) = —100

and we have shown that det(AB) = det(A)det(B) for this example.

If the i*"-row of a matrix A is the sum of the i*’-row of a matrix B and the i**-row of
matrix C and all the other corresponding entries of matrix A, B and C are equal between
the matrices, then

det(A) = det(B) + det(C)

Note 7.6. For general matrices A, B and C this is not true, ie det(A) # det(B)+det(C),
it is only in specific cases such as this one that this equality holds.

Example 7.4.8. Taking

1 0 2 1 0 2 1 0 2
A=1|3 1 -2}, B=|-49 —-12 and C= 1|7 -8 10
0 2 12 0 2 12 0 2 12

and given that det(B) = 116 and det(C) = —88, find det(A).

17



Solution:

From the matrices we can see that all three matrices are equal apart from a single row.
For that particular row the matrix A is equal to the sum of the corresponding rows of
the matrices B and C. Hence we say that

det(A) = det(B) + det(C) = 116 — 88 = 28.

(as an exercise it is worthwhile verifying this by getting the determinant of A explicitly).

The determinant of a matrix with an entire row/column of zeros is always zero.

Example 7.4.9.

7 5 -3 2 0 2 3 7
0 0 0 0 -3 06 17

detl p g9 7 g|T0 Aty 4 5 o |70
3 49 0 —025 2 1

The determinant of matrix is equal to the determinant of the transpose of the matrix.
That is

det(A) = det(A")

Given the matrix A the determinant of the matrix A” is related to the determinant of
A in the following manner

det(A*) = (det(A))"

for k > 0.

Example 7.4.10. Given that

find the value of det(A?).

18



Solution:

We could multiply the matrix A by itself 4 times and find the determinant of the resulting
matrix, which would be an impressive exercise on its own! However this problem can be
complete without resorting such a length computation. First we find

6 -2 1
det(A)=det | 0O 1 3 expanding about the first column
-1 4 2
HE NN m -2 1 m 2
6(—1)'*'det |® 1 3| 4+0(—1)*"det(m W W]+ -1(—1)*"'det (W 1
m 4 2 m 4 2 H BN

Now,

4

det (A*) = (det(A))" = (—56)" = 9834496

Given the matrix A which is triangular the determinant of the matrix A is simply the
product of all the entries on the main diagonal. That is, if A is a triangular matrix of
order n then

det(A) = ﬁ (077
=1

Example 7.4.11.

2 3 -1 12
0 -1 0 4
det [0 0 5 5 | =@EDE)ER) =20
00 0 2
1 0 0 0 0
0 2 0 0 0
det| 55 72 =1 0 0 | =@)©@)(-1)(3)(-1)=6
61 99 1 3 0
—44 51 43 12 -1

19




7.5 Type of Matrices: Inverse matrix and Invertible matrices

One of the most important uses of a determinant is in the computation of an inverse
matrix which is the subject of the next section of this course. Here we define what we
mean by an inverse matrix.

Let A be an n X n matrix. If there exists an n X n matrix B such that
AB =BA =1,

where I,, is the n x n identity matrix, then the matrix A is said to be nonsingular or
invertible.

The matrix B is said to be the inverse of A, and is usually denoted A ™.

Example 7.5.1. The matrix

is invertible since the matrix

is its inverse (show this!).

[ Note 7.7. Not every square matrix is invertible!

Example 7.5.2. Show that the matrix

()

is not invertible.

Solution:
We want to show that there exists no matrix

bir b2
B pu—
(521 b22>

10
AB:I:<0 1)

20

such that



Lets assume there does exist an inverse to the matrix A, this would mean

(1 1\ (b b2\ _ [b11+Dbar bia+ bao
AB = (o 0) (b21 b22) _< 0 0 )

is equal to the identity matrix, which is impossible as

bi1 + b1 big + bao £ 10
0 0 01

as that would require us to have 0 = 1 which is a contradiction. As such the matrix A
does not have an inverse and is said to be singular or noninvertible.

Two questions that we will attempt to answer in the next section of the notes are

e How do we know if a general square matrix is invertible?

e Given an invertible matrix how to we find its inverse?
Finding the inverse of a matrix takes a little more work, however at this point we are
able to define yet another special type of matrix.

7.5.1 Orthogonal matrix

An important class of matrices for engineering and science are known as orthogonal ma-
trices. These matrices often arise when we are working with problems that involve vectors
in a particular basis that we wish to transform into another basis. The transition matrix
from one basis to another basis is an orthogonal matrix.

At this point however we are only interested in the mathematical definition of what an
orthogonal matrix is.

A matrix A is said to be orthogonal if its transpose is equal to its inverse, that is if

AT — A—l

Example 7.5.3. Show that the matrix
cosf) —sinf
A= (Sin 0 cosf )

is an orthogonal matrix.

21



Solution:
The transpose of the matrix A

T [ cos@ sind
A (—sin9 cos@)

now we want to check if AT = A"

AAT — <0089 —sin9> ( cos sin0>

sinf cos® —sinf cos®

B ( cos? 6 + sin? 6 cosé’sin&—sin@cos@) B (1 O) 1

sin @ cos @ — cos 0 sin 6 sin? 0 + cos? 6 01
and thus,
AT =A"!

Example 7.5.4. Other examples of orthogonal matrices include

-1 0 0 /3 2/3 2/3 cos —sinf 0
A=10 0 =1, B=|-23 -1/3 2/3 and C = [sinf cosf O
0 1 0 2y ~2f5 1/ 0 0 1

Show that these are in fact orthogonal matrices!
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