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6 Matrices and Matrix Algebra

In this section of the course the aim is to introduce the reader to the concept of a matrix
and a number of fundamental operations involving matrices.

6.1 Definition of a matrix and the size of a matrix

Definition 6.1 (Matrix).
A matrix is any rectangular array of numbers, expressions or functions.

Note 6.1.
When referring to more than one matrix use the word “matrices”. That is matrices is the
plural of matrix. Eg: In this course we will be working with a large variety of matrices;
don’t panic! we will take it one matrix at a time.

In this course we will work with matrices consisting of numbers and variables exclusively.

Definition 6.2 (Matrix element). The numbers within the matrix are known as the
entries or elements of the matrix.

Example 6.1.1.
The following array of numbers is an example of a matrix(

2 1 0
−1 3 0.5

)
We can say that −1 is an element of the matrix. Another property to note is that the
matrix is made up of 2 rows and 3 columns. We can use the number of rows and columns
to refer to the size of the matrix. The given matrix has a size of 2 rows and 3 columns
or in short: the matrix is a 2× 3 matrix.

Definition 6.3 (Size of a matrix).
The size of a matrix is referred to by stating the number of rows and the number of
columns the matrix consists of. In short if a matrix has m rows and n columns it is said
to be a

m× n matrix

(pronounced “ m-by-n matrix ”).
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In general an m× n matrix has the form

A =


a11 a12 · · · a1n
a21 a22 a2n
...

. . .
...

am1 am2 · · · amn


The entery/element in the ith row and jth column of the matrix A is written as aij. Using
this notation the subscript serves as an address, enabling us to refer to a specific element
in the matrix. Another useful consequence is that the m×n matrix A can be abbreviated
to

A = (aij)m×n .

6.1.1 Type of matrices: column and row vectors

A matrix being a row vector or column vector is based purely upon the size of the matrix.

Definition 6.4 (column vector).
A matrix with consists of one column and one column only is called a column vector or
column matrix.

Definition 6.5 (row vector).
A matrix with consists of one row and row column only is called a row vector or row
matrix.


a1
a2
...
an

 is a n× 1 column vector.
(
a1 a2 · · · an

)
is a 1× n row vector.

Note 6.2. These matrices take their name from vectors. The same vectors which we
met earlier in the course. Row and Column vectors/matrices offer us another way of
representing vectors. For example the vector

2 i− j + 5 k

can be equivalently represented as 〈2,−1, 5〉 as we saw earlier or 2
−1
5

 is a 3× 1 column vector.
(
2 −1 5

)
is a 1× 3 row vector.
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6.1.2 Type of matrices: square matrices

A matrix being a square matrix is again based solely upon the size of the matrix.

Definition 6.6 (square matrix).
Any n× n matrix is called a square matrix (or a matrix of order n). That is any matrix
that has the same number of rows as it does columns is known as a square matrix.

A square matrix of order n has the following general form

A =


a11 a12 · · · a1n
a21 a22 a2n
...

. . .
...

an1 am2 · · · ann


6.2 Equality between matrices

For two matrices to be considered equal the following must be true

• The two matrices must be the same size.

• The two matrices must have the same elements located at the same place.

We can say this more compactly using our mathematical notation. Two m× n matrices
A and B are equal if and only if

aij = bij, for all i and j.

Example 6.2.1.(
1 2
−1 4

)
=

(
1 2
−1 4

)
same size, same elements in the same place.

(
1 1
1 1

)
6=
(

1 1 1
1 1 1

)
matrices aren’t the same size.

(
1 2
4 3

)
6=
(

2 1
4 3

)
elements aren’t in the same place.
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6.3 The Laws of Matrix Addition

Now that we have a basic understanding of what a matrix is and what it means for two
matrices to be equal. We begin to develop the usual operations that we have from regular
algebra. Starting with addition and substraction.

6.3.1 Operation: Addition and subtraction

When two matrices are the same size we can add/subtract them. The result of
adding/subtracting two matrices is another matrix which has the same size as the initial
matrices. The sum/difference of the initial matrices is found by adding/subtracting each
of the corresponding elements of the initial matrices.

In short we can write this mathematically as

Definition 6.7 (Addition and Subtraction).
If A and B are m× n matrices, then their sum is

A + B = (aij + bij)m×n

and their difference is

A−B = (aij − bij)m×n or B−A = (bij − aij)m×n

Example 6.3.1. Given

A =

(
1 2 −1
3 0 2

)
and B =

(
2 2 4
1 1 2

)
then,

A + B =

(
1 + 2 2 + 2 −1 + 4
3 + 1 0 + 1 2 + 2

)
=

(
3 4 3
4 1 4

)
and,

A−B =

(
1− 2 2− 2 −1− 4
3− 1 0− 1 2− 2

)
=

(
−1 0 −5

2 −1 0

)
.

Example 6.3.2. If

A =

(
2 1
0 2

)
and B =

(
1 3 0
2 2 1

)
Then A + B is not defined, since A and B are of different sizes.
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6.3.2 Type of matrix: the zero matrix

Definition 6.8 (Zero matrix/Null matrix).
A zero matrix, sometimes referred to as a null matrix, is a matrix whose elements are all
zeros. It is typically denoted as

0.

A zero matrix can be of any size, when the size of the matrix is required it is typically
denoted

0m,n

this being a matrix with m-rows and n-columns with all entries being 0.

Example 6.3.3 (Zero matrices).

0 =
(

0 0
)
, 0 =

(
0 0
0 0

)
02,3 =

(
0 0 0
0 0 0

)
04,4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


The zero is the additive identity matrix. That is for any matrix A we have

A + 0 = A and 0 + A = A

6.3.3 Operation: Scalar multiplication

If k is a real number, then the scalar multiple of a matrix A is

kA = k


a11 a12 · · · a1n
a21 a22 a2n
...

. . .
...

am1 am2 · · · amn

 = (kaij)m×n

Example 6.3.4. Given

A =

(
2 −3
0 −1

)
then 5A =

(
10 −15
0 −5

)
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6.3.4 Properties of matrix addition

We are now in a position to summarise a number of important properties (which can all
be proven from the definitions that we have seen in the previous sections).

Let A, B and C be m× n matrices and k1 and k2 be scalars. Then it can be shown that

(i) The commutative law of addition:

A + B = B + A

(ii) The associative law of addition:

A + (B + C) = (A + B) + C

(iii) Factoring scalar multiplication

(k1k2)A = k1(k2A)

(iv) Scalar multiplication by 1

1A = A

(v) Distributive Law 1:

k1(A + B) = k1A + k1B

(vi) Distributive Law 2:

(k1 + k2)A = k1A + k2A
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6.4 Matrix Multiplication

We have seen the steps involved in multiplying a matrix by a scalar as well as the steps
involved in the addition and subtraction of matrices, we now turn our attention to the
multiplication of matrices with one another.

We begin with a simple example as an illustration.

Example 6.4.1. Given the row vector

A =
(

2 1 1
)

and the column vector

B =

 2
2
3


Their product is defined to be

AB =
(

2 1 1
) 2

2
3

 = ((2)(2) + (1)(2) + (1)(3)) = (9).

Note 6.3.
This multiplication is effectively the dot product between the two vectors!

6.4.1 Operation: Matrix multiplication

Definition 6.9 (Matric multiplication).
In general, if A is a m× p matrix and B is a p× n matrix, the the product

C = AB

is an m× n matric whose elements

cij

are obtained by “multiplying” the ith row of A by the jth column of B.

Note 6.4. When looking at the product AB the number of columns in matrix A must
be equal to the number of rows in matrix B. Without this the product AB does not exist.
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Below we have a diagram outlining the procedure for matrix multiplication.

a11 a12 . . . a1p

a21 a22 . . . a2p

...
...

. . .
...

am1 am2 . . . amp




A : m rows p columns

b11 b12 . . . b1n

b21 b22 . . . b2n

...
...

. . .
...

bp1 bp2 . . . bpn





B : p rows n columns

c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

. . .
...

cm1 cm2 . . . cmn





a 2
1
×
b 12

a 2
2
×
b 22

a 2
p
×
b p2

+

+ . . .+

C = AB : m rows n columns

6.4.2 Examples and differences between scalar and matrix multiplication

Example 6.4.2 (Matrix multiplication does not commute.).

If

A =

(
1 2
2 3

)
and B =

(
2 1
3 −2

)
obtain

(i) AB (ii)BA.

Solution:
(i)
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AB =
(

1 2
2 3

) (
2 1
3 −2

)
=

2 × 2 2 × 2

(
(1)(2) + (2)(3) (1)(1) + (2)(−2)
(2)(2) + (3)(3) (2)(1) + (3)(−2)

)
=

(
8 −3

13 −4

)
2 × 2

(ii)

BA =

(
2 1
3 −2

)(
1 2
2 3

)
=

(
4 7
−1 0

)

Note 6.5. From this example we can see that

AB 6= BA

That is, matrix multiplication, in general, is not commutative.

♦

Example 6.4.3 (Not all products are defined.).

If

A =

 3 1
0 4
1 2

 and B =

(
2
1

)

obtain

(i) AB (ii)BA.

Solution:
(i) First we must check that the product is defined (this is achieved by looking at the size
of each matrix):

AB =

 3 1
0 4
1 2

 (
2
1

)

3 × 2 2 × 1
match

X The matrix multiplication is defined.
The result will be a 3× 1 matrix.
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Working out the product

AB =

 (3)(2) + (1)(1)
(0)(2) + (4)(1)
(1)(2) + (2)(1)

 =

 7
4
4

 .

(ii) Check if the multiplication is defined for the given matrices:

BA =

(
2
1

)  3 1
0 4
1 2


2 × 1 3 × 2

don’t match

× The matrix multiplication is not defined.
There is no product.

♦

There are a number of peculiarities when working with matrix multiplication. We have
already seen that the matrix multiplication is not commutative that is, in general

AB 6= BA

In the next two examples we will see two more interesting differences between matrix
multiplication and scalar multiplication.

Example 6.4.4 (Product resulting in zeros).

Compute the product YZ given

Y =

(
1 1
2 2

)
and Z =

(
−1 1
1 −1

)

Solution:
Since the number of rows of matrix Y is equal to the number of columns of matrix Z we
know that the matrix multiplication is defined.

YZ =

(
1 1
2 2

)(
−1 1
1 −1

)
=

(
(1)(−1) + (1)(1) (1)(1) + (1)(−1)
(2)(−1) + (2)(1) (2)(1) + (2)(−1)

)
=

(
0 0
0 0

)
Thus we have

YZ = 0.
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Notice however that neither Y nor Z are themselves a zero matrix.

This is in contrast to scalar multiplication where given two scalars k1 and k2,
such that

k1k2 = 0

then either k1 = 0 or k2 = 0. This is not the case for matrix multiplication!
Thus, given two matrices A and B such that

AB = 0

in general does not imply that A = 0 or B = 0.

♦

Example 6.4.5 (Different matrices same product).

Provided with the following three matrices

A =

(
1 1
2 2

)
, B =

(
2 1
2 2

)
and C =

(
3 0
1 3

)
Show that AB = AC.

Solution:

AB =

(
1 1
2 2

)(
2 1
2 2

)
=

(
(1)(2) + (1)(2) (1)(1) + (1)(2)
(2)(2) + (2)(2) (2)(1) + (2)(2)

)
=

(
4 3
8 6

)
and

AC =

(
1 1
2 2

)(
3 0
1 3

)
=

(
(1)(3) + (1)(1) (1)(0) + (1)(3)
(2)(3) + (2)(1) (2)(0) + (2)(3)

)
=

(
4 3
8 6

)
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Notice however that even though we have

AB = AC

this does not mean that B = C. This is in complete contrast with scalar
multiplication; given scalars k1, k2 and k3 such that k1k2 = k1k3 we can conclude
that k2 = k3. However this does not hold with matrix multiplication! We have
not met the idea of an invertible matrix yet however for later reference, the only
situation where B 6= C given that AB = AC occurs when the matrix A is
non-invertible.

♦

6.4.3 Type of matrix: the identity matrix

Definition 6.10 (Identity matrix).
An identity matrix is a matrix which satisfies all of the following properties:

• The matrix is square.

• The elements on the main diagonal are all 1s.

• The elements not on the main diagonal are all 0s.

An identity matrix is typically denoted as

I or sometimes 1

When the size of the identity matrix is required a subscript is typically used such as

In

this a matrix with n-rows and n-columns, the elements on the main diagonal (↘) are all
ones while every other element is zero.

Example 6.4.6 (Identity matrices).

I =
(

1
)
, I =

(
1 0
0 1

)
I3 =

 1 0 0
0 1 0
0 0 1

 I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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The identity matrix is actually the multiplicative identity matrix. That is for any matrix
A we have

IA = AI = A

It is important to note however, if A is an m× n matrix then we have

ImA = AIn = A

The matrices Im and In are indeed both identity matrices however they are different
identity matrices. In this regard one needs to be aware that for non-square matrices A the
‘multiplicative identity’ is not just a single matrix. This is unlike the scalar multiplication
where the multiplicative identity is simply the number 1. The multiplicative identity for
matrices depends on the matrix multiplication at hand.

6.4.4 Properties of matrix multiplication

Given arbitrary matrices A, B, C and a scalar k. Whenever the relevant addition and
multiplication is defined we have

(i) The associative law

(AB)C = A(BC)

(ii) The left distribution law

A(B + C) = AB + AC

(iii) The right distribution law

(B + C)A = BA + CA

(iv) Scalar multiplication,

k(AB) = (kA)B = A(kB).

Here are some important differences between matrix multiplication and scalar multipli-
cation
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Given arbitrary matrices A, B and C

• AB 6= BA The order matters.

• If AB = 0 this does not mean that either A = 0 or B = 0.

• If we have matrices such that

AB = AC

the does not mean that B = C. We have to first find out if the matrix A is invertible
(we will see this in a later section).

6.5 Powers of a matrix and polynomials in matrices

With a clear definition of matrix multiplication we can consider raising matrices to scalar
powers. At this point we will simply introduce the basics however we will revisit this topic
when we have met diagonalisation and again when we have met the Cayley-Hamilton the-
orem in later sections of this course.

6.5.1 Operation: Matrix raised to a power

Given a square matrix A and a natural number k, i.e. k ∈ N then

Ak = A ·A · . . . ·A︸ ︷︷ ︸
k times.

Example 6.5.1 (Raising a matrix to a power).

Given the matrix

A =

(
1 0
2 2

)
Find (i) A2, (ii) A3, (iii) A5 and A10.

Solution:
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(i) To find A2 we simply multiply A by itself

A2 =

(
1 0
2 2

)(
1 0
2 2

)
=

(
1 0
6 4

)
(ii) To find A3 we could multiply A by itself three times or use the expression we found
for A2 in the previous part

A3 = A2A =

(
1 0
6 4

)(
1 0
2 2

)
=

(
1 0
14 8

)
(iii) now A5 = A3A2

A5 = A3A2 =

(
1 0
14 8

)(
1 0
6 4

)
=

(
1 0
62 32

)
(iv) finally we have

A10 = A5A5 =

(
1 0
62 32

)(
1 0
62 32

)
=

(
1 0

2046 1024

)
♦

Here it is worthwhile to make a number a couple of important notes. The powers
that we can examine in this manner are positive integer powers. We cannot find the
result of a matrix raised to a negative power and even through it is possible to define
what is meant by raising a matrix to a fractional power we will not be examining this here.

We can however state that for any given square matrix A

A0 = I.

That is, raising a matrix to the power of zero results in the identity matrix.

It is again worthwhile reminding the reader that matrix algebra can be a little different
to what we are used to.

Example 6.5.2.

Given two arbitrary square matrices of order n A and B is

A2 −B2 = (A−B)(A + B) ?

Give a reason for your answer.
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Solution:
The answer is no. To see this we will multiply the expression on the righthand side

(A−B)(A + B) = A(A + B)−B(A + B)

= A2 + AB−BA︸ ︷︷ ︸
6=0

+B2

we know however that for matrices in general AB 6= BA and thus in general

(A−B)(A + B) 6= A2 −B2

♦

Example 6.5.3.

Given two arbitrary square matrices of order n A and B is

A2B2 = (AB)2 ?

Give a reason for your answer.

Solution:
In general this above identity does not hold. To see why we examine

(AB)2 = ABAB.

We also have

A2B2 = AABB.

The problem asks if

A2B2 = (AB)2 ?

we can say in general this is not true as

ABAB 6= AABB

by virtue of AB 6= BA with matrix multiplication.
♦
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6.5.2 Polynomials in matrices

Though not used extensively in this course, polynomials involving matrices can be found
in many aspects of Engineering. Polynomials in matrices are defined as

P (X) = a0I + a1X + a2X
2 + · · ·+ anX

n

If we can find a matrix R such that P (R) = 0 then we say that R is a root of the
polynomial P (X).

Example 6.5.4 (Matrix polynomial).

Suppose

A =

(
1 −2
−2 3

)
and the polynomials f and g are given by

(i) f(X) = 5 + 2X + 3X2

(ii) g(X) = X + X2

Evaluate f(A) and g(A).

Solution:
(i)

f(A) = 5I + 2A + 3A2

= 5

(
1 0
0 1

)
+ 2

(
1 −2
−2 3

)
+ 3

(
1 −2
−2 3

)(
1 −2
−2 3

)

=

(
5 0
0 5

)
+

(
2 −4
−4 6

)
+ 3

(
5 −8
−8 14

)

=

(
22 −28
−28 53

)
.

(ii)

g(A) = A−A2 =

(
1 −2
−2 3

)
−
(

5 −8
−8 14

)
=

(
−4 10

6 −11

)
♦
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