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5 Curves and Curvature

Here the aim is to examine curves that are written in parametric form. This section will
culminate to an idea of curvature of a curve at every point along its length.

5.1 Parametric Representation of a Curve

Consider a curve C
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(a) The curve C (b) At each point on the curve there is an asso-
ciated position vector

Figure 1: A curve and a position vector associated with each point on the curve.

at a particular point on this curve (x,y, z) one can associate a position vector

r=xit+yj+zk

The collection of position vectors which sweep out the curve C' can be written in para-
metric form as

r(t)=z(t)i+yt)j+z2(t)k

From this parametrised position vector we have the curves parametric representation

r=uzxz(t), y=vy(t) and z=z(t)



5.2 Tangent to a Curve

The usefulness of having the parametric representation can be immediately appreciated
when looking for a tangent to a curve; this is given in form of the tangent vector

Definition 5.1.

Given a curve C' with an associated parametrised position vector

r(t)=z(t)i+yt)j+z2(t)k

The Tangent vector is given by

where

is the parametric form of the curve.

One can see the result with the aid of a diagram and a little calculus
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(a) Looking at position vector to a point (b) The vector Ar = r(t + At) — r(t)
on the curve at ¢t and t + At

Figure 2: Finding the tangent to the curve at the point with position vector r(t).

We have

Ar =r(t + At) —r(t)



the vector Ar is our approximation (made sufficiently small) to the curve at the point
with position vector r(¢). We can say that

Ar  r(t+ At) —r(t)

At At

to find the tangent to the curve all one requires is to take the limit as At — 0

I Ar , r(t+At) —r(t) _ dr
AtS0 A At At Cdt

5.2.1 Unit tangent vector

We can find a unit tangent vector to the curve C' by dividing the tangent vector by its
length

dr
dt

dr
dt

il
Il

5.2.2 Worked example

p
Example 5.2.1. Consider the vector function
r(t) = acos(t)i+ bsin(t) j

Identify the curve that the position vector sweeps out. Assume that a = b and find a
unit tangent vector to the curve.

Solution:
We have

r(t) = acos(t)i+ bsin(t) j

but we know that the position vector is given by

r=xi+vyj

giving us the parameteric equation to the curve

xr=acos(t), and y=bsin(t)




example continued . ..

notice that we can write the parameteric equations as

x y .
- cos(t), an 7, sin(t)
and hence,
>  y? .
St = cos®(t) + sin’(t)

=1

Thus the curve can be written in implicit form as

which is the equation of an ellipse on the zy plane (z = 0).

We now set about finding a unit tangent vector. The question tells us to assume that
a = b which corresponds to the equation of a circle. We know that a tangent to the curve

is given by
dr d Loodo .
u=— = E[a cos(t)] i+ %[bSID(t)]J
= —asin(t) i+ bcos(t)]j.

Letting b = a we have

u = —asin(t)i+ acos(t)j

To make the vector of unit length we need to divide by its length

lu| = \/a2 sin?(t) + a2 cos?(t) = \/&2(sin2(t) + cos2(t)) = Va2 = a.

The unit tangent vector is given by

= 1 (—asin(t)i+ acos(t)j) = —sin(t)i+ cos(t) j

a




5.3 Arc Length of a Curve

If S is the arc length of the curve C' between the points a and b as shown in the diagram

Y4

Figure 3: The length of the curve S between two points on the curve C.

Using the notation
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where dS? = dxz? + dy? + dz*. Hence we have an expression for an infinitesimal length
along the curve C'

we know that

dS =Vr' -r'dt

In order to find the length of the section S between the points a and b we simply take
the sum of the infinitesimal lengths between the points along the curve,

Important Formula 5.1 (Arc Length of a Curve).

ty tp
S:/\/r’-r’dt:/|r’|dt
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5.4 Curvature and the Principal Unit Normal Vector
We begin with

a-a=1

Using the product rule and differentiating with respect to S

. da n da 0
u:- — — -0 =
as dS
and now,
da
20- — =0
tas
da
=0-— =0
tas
da | . N
Hence we have 7S is perpendicular to .
z
N u

Figure 4: The vector N is perpendicular to 1.

We can write

where & is the curvature.




5.4.1 Direct Calculation of Curvature and unit Normal in terms of ‘t’

We can calculate x in terms of ¢ without having to calculate @ in terms of S first.

_ |da
"=14s

now,
da_ dads
dt  dS dt

hence,
da_da /ds
ds — dt / dt

Let,

ds
S = dt = — = |r’
JEE
da
dt di ,
h=—"=— Ir'| .
x|
Similarly we can obtain N in terms of ¢.
~ lda
N=-—
Kk dS
ie.
dia da
S S TR ST
dia v as dia
— r —_— —
dt dt dt
~ da /|da
N=—/|—
dt / dt
Hence we can calculate N without having to calculate S first.
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5.4.2 Worked Examples

~

Example 5.4.1. Calculate

1. the principal unit normal vector, N

2. the curvature,

3. the radius of curvature, R, for the helix

r =acos(t)i+ asin(t)j+ ctk

where a and c are positive constants

Solution:

/") y

X

Figure 5: A helix
To find the unit normal we begin by finding the unit tangent vector, &
r =acos(t)i+ asin(t) j+ ctk

/

r' = —asin(t)i+ acos(t)j+ck

= |r'| = \/a2 cos2(t) + a2 sin’(t) + ¢ = Va2 + ¢2

hence,

G=—=———1—asin(t)it+acos(t)j+ck
x| \/a2+02{




example continued. . .

The normal vector is the derivative of the tangent vector with respect to ¢

da 1

=T {—acos(t) i— asin(t>j}

which has a length

da

1 a
— | = — a? cos?(t +a2sin2t}:—.
dt \/a2+62{\/ (¥ (¥ Vva?+ 2

Finally the unit normal vector, N, is given by

N = a jlaa 1 —acos(t)i— asin(t)]j WAk
dt dt _\/a2—|—c2 J a

A~

N = —cos(t)i—sin(t) ]

We now find the curvature  of the helix, recall that

1
\/&2 + 2 Va2 + 2

a? + c?

The radius of curvature R = —
K

a? + ¢

1
R:—:
K

Note that when ¢ = 0 the helix collapses to a circle in the x-y plane and that
the radius of curvature R becomes R = a as would be expected.
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Example 5.4.2. Obtain
1. the unit tangent vector, i
2. the unit normal vector, N
3. the curvature, x

for the curve,

r = (cos(t) + tsin(t)) i+ (sin(t) — t cos(t)) j, t>0

Solution:

Figure 6: A plot of the curve for 0 <t < 67

Taking the first derivative we have the tangent vector

= <_ sin(t) + t cos(t) +sin(t)) i+ (cos(t) + tsin(t) — cos(t)) ]
— tcos(t) i+ tsin(t)

with length

It'| = \/t2 cos?(t) + t2sin?(t) = ¢

hence

U = cos(t) i+ sin(t) j
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Example 5.4.3. Obtain
1. the unit tangent vector, i
2. the unit normal vector, N
3. the curvature, x

for the curve,

2
r=ti+ —j

Solution:
For a sketch of the curve recall that

r=xit+yj+zk

which for this curve implies that

2
r =1, yzE, and z=0

thus the curve describes the parabola

Figure 7: A parabola in the xy-plane.
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p
example continued . ..
Now,
t2
r:ti+§j:>r/:1i+tj
and,
It'| = V1 + t2
Hence,
e L)
a= i
V14t !
To find the normal vector we require the derivative of the unit tangent vector

dia 1 1 3
— — 0i+1j li+tjp (—=(1 +tH) 722t
— 1+t2{1+ J}+{1+ J}<2(+ ) )
3 titt))
VIt (1+8)3
I+ j—ti—t?]

(1+12)2

:ﬁ{—tiﬂ}

the length of this vector is

da 1

1
—_— 1+t2}:
dt (1+t2>3{

1+¢2
We can now find the unit normal vector

. db
N=—
dt/

da

1
dt

v o) {—ti—l— j} (1+¢%)
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