

Maynooth University

National University of Ireland Maynooth

BE in Electronic Engineering with Communications
BE in Electronic Engineering with Computers
BE in Electronic Engineering
BE in Robotics and Intelligent Devices

Year 1
SEMESTER 1
2018-2019

EE106
 Engineering Mathematics I

Dr. P. Watts

Time allowed: 2 hours
Answer Question 1 and any two others
Question 1 carries 50 marks and all others carry 25 marks each

1. This Question Is Compulsory

(a) Use the ratio test to show that the geometric series

$$
1+\frac{x^{2}}{3}+\frac{x^{4}}{9}+\frac{x^{6}}{27}+\frac{x^{8}}{81}+\ldots
$$

converges when $|x|<\sqrt{3}$.
(b) Evaluate the following limit:

$$
\lim _{x \rightarrow \pi}\left[\frac{x^{2}-2 x}{2-\cos (x)}\right]
$$

(c) Give the definition of the derivative of a function $f(x)$, and use this definition to differentiate the function

$$
f(x)=-x^{2}+10 x+3
$$

(10 marks)
(d) Find the critical points of the function

$$
f(x)=x^{2}\left(4-x^{2}\right)
$$

and classify each of them as a maximum, a minimum or indeterminate.
(10 marks)
(e) Write down a solution to the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=9 y
$$

(f) Calculate the area under the curve

$$
f(x)=x^{2}-\frac{8}{x^{3}}
$$

from $x=1$ to $x=3$.
(g) Evaluate the integral

$$
\int \frac{2 x}{x^{2}+36} \mathrm{~d} x
$$

2. (a) State l'Hôpital's rule and use it to evaluate the limit

$$
\lim _{x \rightarrow 0}\left[\frac{x}{\sinh (x) \cosh (3 x)}\right] .
$$

(10 marks)
(b) State Taylor's theorem and use it to show that the first four terms in the Taylor expansion of $1 / \sqrt{1-2 x}$ around 0 are

$$
\frac{1}{\sqrt{1-2 x}}=1+x+\frac{3 x^{2}}{2}+\frac{5 x^{3}}{2}+\ldots
$$

(15 marks)
3. (a) Write down two independent solutions to the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+144 y=0
$$

(10 marks)
(b) Technetium-96 decays radioactively such that the number $N(t)$ of technetium- 96 atoms in a sample at time t obeys the differential equation

$$
\frac{\mathrm{d} N(t)}{\mathrm{d} t}=-k N(t)
$$

where $k=58.8 \mathrm{y}^{-1}$. If N_{0} is the initial number of atoms, solve this differential equation and use it to calculate the half-life (expressed in days) of Technetium-96.
(15 marks)
4. (a) The function

$$
f(x)=4 \sqrt{\frac{x}{x^{2}+1}}
$$

is rotated about the interval $[0,1]$ to form a volume of revolution. Calculate its volume.
(b) State the formula for integration by parts and use it to evaluate the integral

$$
\int x \sinh (2 x) \mathrm{d} x
$$

