EE106 – Engineering Mathematics I

Problem Set 8

Due by 5pm on Friday, 30 November 2018

- 1. The indefinite integral of $f(x) = \sec(x)$ is $F(x) = \ln[\sec(x) + \tan(x)] + C$, where C is an arbitrary constant. Prove this by showing that F'(x) = f(x).
- 2. Find the area under the curve $f(x) = 3 + x 2/\sqrt{x}$ between 1 and 4.
- 3. (a) Compute

$$\int_0^3 \frac{3x}{\sqrt{16+x^2}} \,\mathrm{d}x$$

by using the change of variables $u = 16 + x^2$.

(b) Use the trigonometric substitution $x=3\tan(\theta)$ to do the following integral:

$$\int \frac{1}{\left(x^2+9\right)^{3/2}} \,\mathrm{d}x.$$

4. Compute the integral

$$\int x^2 \cos\left(1+2x^3\right) \,\mathrm{d}x.$$

(It's up to you to find the necessary change of variables to make this doable.)