# EE106 - Engineering Mathematics I 

## Problem Set 8

Due by 5pm on Friday, 30 November 2018

1. The indefinite integral of $f(x)=\sec (x)$ is $F(x)=\ln [\sec (x)+\tan (x)]+C$, where $C$ is an arbitrary constant. Prove this by showing that $F^{\prime}(x)=$ $f(x)$.
2. Find the area under the curve $f(x)=3+x-2 / \sqrt{x}$ between 1 and 4 .
3. (a) Compute

$$
\int_{0}^{3} \frac{3 x}{\sqrt{16+x^{2}}} \mathrm{~d} x
$$

by using the change of variables $u=16+x^{2}$.
(b) Use the trigonometric substitution $x=3 \tan (\theta)$ to do the following integral:

$$
\int \frac{1}{\left(x^{2}+9\right)^{3 / 2}} \mathrm{~d} x
$$

4. Compute the integral

$$
\int x^{2} \cos \left(1+2 x^{3}\right) \mathrm{d} x
$$

(It's up to you to find the necessary change of variables to make this doable.)

