EE106 - Engineering Mathematics I
 Problem Set 7

Due by 5pm on Friday, 23 November 2018

1. Suppose that $f(x)$ satisfies the differential equation (DE)

$$
-f^{\prime \prime}(x)+6 f^{\prime}(x)+16 f(x)=0
$$

(a) Find this DE's auxilary equation and use it to show that

$$
f(x)=A e^{-2 x}+B e^{8 x}
$$

is a solution to the DE for any choice of the constants A and B.
(b) Find the values of A and B such that $f(0)=-1$ and $f^{\prime}(0)=1$.
2. Write down two independent solutions to the DE

$$
\frac{\mathrm{d}^{2} y(t)}{\mathrm{d} t^{2}}+625 y(t)=0
$$

3. If α is a positive constant, confirm that

$$
y(x)=\frac{3(\alpha-1) \sin (x)-3 \cos (x)}{\alpha^{2}-2 \alpha+2}
$$

is a solution to

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}+\alpha y=3 \sin (x)
$$

by computing the left-hand side and showing that it is indeed equal to $3 \sin (x)$.
4. Consider the function

$$
f(x)=h-\frac{h x}{b} .
$$

(a) Let $g(x)$ be the function

$$
g(x)=h x-\frac{h x^{2}}{2 b}
$$

Show that $g^{\prime}(x)=f(x)$.
(b) Use the Fundamental Theorem of Calculus to compute

$$
\int_{0}^{b} f(x) \mathrm{d} x
$$

(c) Make a plot of $f(x)$ between $x=0$ and $x=b$; given this plot, and what quantity a definite integral represents, explain why you could have guessed the value of the integral in (b) based only on stuff you learned in secondary (or maybe even primary) school.

