EE106 - Engineering Mathematics I

Problem Set 6
Due by 5pm on Friday, 16 November 2018

1. The curve given in plane polar coordinates by

$$
r=\csc \left(\theta+\frac{\pi}{4}\right)
$$

describes a straight line. Prove this by showing that in Cartesian coordinates, the above is equivalent to $y=a x+b$ for some constants a and b.
2. Let z be the complex number $1+i$.
(a) Compute $z^{*}, z^{2}, 1 / z$ and e^{z}, all expressed in Cartesian form, i.e. in the form $a+b i$.
(b) Now express them all in polar form, i.e. in the form $r e^{i \theta}$.
3. A radioactive element has a half-life of 127 days. The number of atoms in a sample of this element is given at time t by a function $N(t)$ that satisfies the differential equation (DE)

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=-k N
$$

where k is the decay constant of the element.
(a) Determine the value of k.
(b) If the initial number of atoms in the sample is N_{0}, find the time it takes for one-third of the atoms to decay.
4. Consider the DE

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y+\frac{1}{y}
$$

We wish to find the solution that satisfies $y(0)=1$.
(a) First, we define a new function $f(x)=[y(x)]^{2}+1$. Compute $f^{\prime}(x)$ in terms of $y^{\prime}(x)$.
(b) Using the above DE for y, show that we now have a DE for f of the form

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}=2 f
$$

(c) Determine $f(0)$ and use it and the DE in (b) to find $f(x)$.
(d) Remembering that $y(0)=1$, find $y(x)$.

