EE106 - Engineering Mathematics I

Problem Set 5

Due by 5pm on Friday, 9 November 2018

1. Use l'Hôpital's rule to evaluate the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{x^{3}+2 x-7}{3 x^{3}+x^{2}-x-1}$
(b) $\quad \lim _{x \rightarrow 1} \frac{x-\frac{1}{x}}{x^{2}-\frac{2}{x+1}}$
(c) $\lim _{x \rightarrow 0} \frac{1-\sqrt{1+9 x}}{\sqrt{x}}$
2. Show that the first three nonzero terms in the Taylor series expansion of $1 /\left(1-2 x^{2}\right)$ around the point $a=0$ are

$$
\frac{1}{1-2 x^{2}}=1+2 x^{2}+4 x^{4}+\ldots
$$

3. Show that the first three nonzero terms in the Taylor series expansion of $\sin (x)$ around the point $a=\pi / 2$ are

$$
\sin (x)=1-\frac{1}{2}\left(x-\frac{\pi}{2}\right)^{2}+\frac{1}{24}\left(x-\frac{\pi}{2}\right)^{4}+\ldots
$$

4. The Taylor series expansion of $\ln (x)$ around the point $a=1$ is

$$
\ln (x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-1)^{n}}{n}
$$

(You don't have to show this.) Use the first four terms of this series to obtain an approximate value for $\ln \left(e^{-2}\right)$ (where $e \approx 2.7182818$). How close is this - expressed as a percentage - to the actual value of -2 ?

