EE106 - Engineering Mathematics I
 Problem Set 2

Due by 5pm on Friday, 12 October 2018

1. (a) The total resistance of N resistors $R_{1}, R_{2}, \ldots, R_{N}$ connected in series is

$$
\begin{aligned}
R_{\mathrm{total}} & =R_{1}+R_{2}+\ldots+R_{N} \\
& =\sum_{i=1}^{N} R_{i}
\end{aligned}
$$

Suppose the $i^{\text {th }}$ resistance is given by the formula

$$
R_{i}=\frac{2^{i} Z}{3^{i}}
$$

where $Z=2$ ohms; what is the total resistance of an infinite number of these resistors connected in series?
(b) Construct an infinite geometric series whose first term is 3 and whose sum is 27 . In other words, give appropriate values for a and r.
2. (a) Use the comparison test to prove that the series

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}+3 n}
$$

converges. (Hint: think of a convergent geometric series that you can compare it to.)
(b) Use the ratio test to show that the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n}
$$

converges if $|x|$ is less than 1.
3. For each of the following functions, state if the given limit exists, and if it does, find it:
(a) $\lim _{x \rightarrow-1}\left(x^{2}-13 x+25\right)$
(b) $\quad \lim _{x \rightarrow 2} \frac{2 x}{3 x-7}$
(c) $\lim _{x \rightarrow-\infty} \frac{1}{1-e^{2 x}}$
4. (a) Plot the function $f(x)=|x|-1$. Is it continuous or discontinuous at $x=0$?
(b) Sketch a graph which depicts a function $g(x)$ which has discontinuities at $0,1.5$ and -1 but is continuous at all other values of x.

