EE106 - Engineering Mathematics I

Problem Set 10
Due by 5pm on Friday, 14 December 2018

1. The function

$$
f(x)=3 \cosh (2 x)
$$

is rotated around the interval $[0, a]$, where a is a positive constant, to obtain a solid of revolution. Calculate its volume. You may find the following identity useful:

$$
[\cosh (\theta)]^{2}=\frac{1}{2}[\cosh (2 \theta)+1] .
$$

2. Consider the curve given by the function

$$
g(x)=\sqrt{2 x-x^{2}}
$$

between $x=0$ and $x=2$. The region under this curve is rotated around the x-axis to give a solid of revolution. Calculate its volume.
3. Now we rotate the curve given in Problem 2 around the x-axis to get a surface of revolution. Calculate its area.
4. Now calculate the length of the curve given in Problem 2. (Hint: try the substitution $x=2[\sin (\theta)]^{2}$ and use appropriate trigonometric identities to simplify the resulting integral.)

