

Maynooth University

National University of Ireland Maynooth

OLLSCOIL NA hÉIREANN MÁ NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH

BE in Electronic Engineering with Communications
BE in Electronic Engineering with Computers BE in Electronic Engineering BA in Finance \& Venture Management

Year 1

Semester 1

2014-2015

Engineering Mathematics I EE106

Dr. Paul Watts

Time allowed: 2 hours
Answer Question 1 and any two others
Question 1 carries 50 marks and all others carry 25 marks each

1. This Question Is Compulsory

(a) [5 marks] Use the ratio test to show that the series

$$
1+\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\frac{1}{x^{4}}+\ldots
$$

converges when $|x|>1$.
(b) [5 marks] Evaluate the following limit:

$$
\lim _{x \rightarrow-2}\left(\frac{x-2}{x^{2}-1} \tan (x)\right)
$$

(c) [5 marks] Give the definition of the derivative of a function $f(x)$, and use this definition to differentiate the function

$$
f(x)=2(x-5)^{2}
$$

(d) [10 marks] Find the critical points of the function

$$
f(x)=x(x-3)^{3}
$$

and classify each of them as a maximum, a minimum or neither.
(e) [5 marks] Write down a solution to the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=10 y
$$

(f) [10 marks] Calculate the area under the curve

$$
f(x)=\frac{2}{x}-\frac{1}{x^{2}}
$$

from $x=1$ to $x=10$.
(g) [10 marks] Use a trigonometric substitution to evaluate the integral

$$
\int \frac{\mathrm{d} x}{4+x^{2}}
$$

2. (a) [$\mathbf{1 0}$ marks] State l'Hôpital's rule and use it to evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{(\sinh (3 x))^{2}}{x^{2}}
$$

(b) [15 marks] State Taylor's theorem and use it to show that the first four terms in the Taylor expansion of $\sqrt{1+x}$ around 0 are

$$
\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}+\ldots
$$

3. (a) [10 marks] Write down two independent solutions to the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+25 y=0
$$

(b) [15 marks] Plutonium-244 decays with time and the number $N(t)$ of atoms in a sample at time t obeys the differential equation

$$
\frac{\mathrm{d} N(t)}{\mathrm{d} t}=-k N(t)
$$

where $k=8.66 \times 10^{-9} \mathrm{y}^{-1}$. Solve this differential equation and use it to calculate the half-life of plutonium-244.
4. (a) [10 marks] The function

$$
f(x)=x(1-x)
$$

is rotated about the interval $[0,1]$ to form a volume of revolution. Calculate its volume.
(b) [15 marks] State the formula for integration by parts and use it to evaluate the integral

$$
\int x \sin (x) \mathrm{d} x
$$

