# EE106 - Engineering Mathematics I 

## Problem Set 9

Due in tutorial on Thursday, 11 December 2014

1. The function

$$
f(x)=x+3 x^{2}
$$

is rotated around the interval $[-1,1]$ to obtain a solid of revolution. Calculate its volume.
2. The region under the curve $f(x)=\cosh (x)$ between $x=0$ and $x=a$ (where $a$ is a positive number) is rotated around the $x$-axis to give a solid of revolution. Calculate its volume. (You may find the identity

$$
(\cosh (x))^{2}=\frac{1}{2}+\frac{1}{2} \cosh (2 x)
$$

useful.)
3. Now we rotate the curve $f(x)=\cosh (x)$ between $x=0$ and $x=a$ around the $x$-axis to get a surface of revolution. Calculate its area. (Remember that $(\cosh (x))^{2}-(\sinh (x))^{2}=1$.)
4. Now calculate the length of the curve $f(x)=\cosh (x)$ between $x=0$ and $x=a$.

