EE106 - Engineering Mathematics I

Problem Set 6

Due in tutorial on Thursday, 20 November 2014

1. A radioactive element has a half-life of 33150 years. The number of atoms in a sample of this element is given at time t by a function $N(t)$ that satisfies the differential equation (DE)

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=-k N
$$

where k is the decay constant of the element.
(a) If the initial number of atoms in the sample is N_{0}, show that $N(t)=$ $N_{0} e^{-k t}$.
(b) Find the time it takes for 33% of the atoms to decay.
2. Suppose that $f(x)$ satisfies the DE

$$
2 f^{\prime \prime}(x)+5 f^{\prime}(x)-3 f(x)=0
$$

(a) Show that

$$
f(x)=A e^{x / 2}+B e^{-3 x}
$$

is a solution to the DE for any choice of the constants A and B.
(b) Find the specific constants such that $f(0)=1$ and $f^{\prime}(0)=-1$.
3. Write down two independent solutions to the DE

$$
\frac{\mathrm{d}^{2} y(t)}{\mathrm{d} t^{2}}+196 y(t)=0
$$

4. Show that if a is a positive constant, then

$$
y(x)=\frac{\sin (x)+(a-1) \cos (x)}{a^{2}-2 a+2}
$$

is a solution to

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}+a y=\cos (x)
$$

(Comment: This solution illustrates the phenomenon of resonance. As the constant a gets closer to 1 , the maximum value of $y(x)$ increases, and if a moves away from 1 , the maximum value decreases.)

