EE106 - Engineering Mathematics I

Problem Set 5

Due in tutorial on Thursday, 13 November 2014

1. If $f(x)$ and $g(x)$ are the two functions

$$
f(x)=\exp \left\{(\cos (x))^{2}\right\}, \quad g(x)=\exp \left\{(\sin (x))^{2}\right\}
$$

then compute the derivative of $f(x) g(x)$. Explain why it is unnecessary, although perfectly permissible, to use the product rule in your computation.
2. Show that the first three nonzero terms in the Taylor series expansion of $1 /\left(1+x^{2}\right)$ around the point $a=0$ are

$$
\frac{1}{1+x^{2}}==1-x^{2}+x^{4}+\ldots
$$

3. The Taylor series expansion of $\ln (x)$ around the point $a=1$ is

$$
\ln (x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-1)^{n}}{n}
$$

Use the first three terms of this series to obtain an approximate value for $\ln \left(e^{-1}\right)$ (where $e \approx 2.7182818$). How close is this - expressed as a percentage - to the actual value of -1 ?
4. Let z be the complex number $2+3 i$. Compute z^{*}, z^{2} and e^{z}, all expressed in the form $a+b i$.
(Hint for the third computation: remember that $e^{x+y i}=e^{x} e^{i y}$.)

