EE106 - Engineering Mathematics I

Problem Set 10

Due in tutorial on Thursday, 18 December 2014

1. Find the mean value of the function

$$
f(x)=x^{5}-\frac{2}{x^{3}}
$$

over the interval $[1,2]$.
2. A decaying voltage has the form

$$
V(t)=V_{0} e^{-t} \sin (2 t)
$$

where V_{0} is a positive constant. Find the root-mean-squared (RMS) value of this voltage between $t=0$ and $t=\pi$. Remember that

$$
(\sin (\theta))^{2}=\frac{1}{2}-\frac{1}{2} \cos (2 \theta)
$$

for any angle θ.
3. Use Newton's method to obtain an estimate for the zero of the cubic function

$$
f(x)=2 x^{3}-x^{2}+10 x-5
$$

by starting with an initial guess of $x_{1}=1$. Stop when you obtain two successive estimates that differ by less than 0.001 . (You should get to this level of precision only after a few iterations.)
4. Simpson's rule says that if we choose to divide the interval $[a, b]$ into four regions, then

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{\Delta x}{3}\left[f\left(x_{1}\right)+4 f\left(x_{2}\right)+2 f\left(x_{3}\right)+4 f\left(x_{4}\right)+f\left(x_{5}\right)\right]
$$

where $x_{1}=a, x_{5}=b$ and

$$
x_{i}=a+(i-1) \Delta x, \quad \Delta x=\frac{b-a}{4}
$$

Use this to estimate the integral

$$
\int_{1}^{2} \frac{1}{x} \mathrm{~d} x
$$

and compare your result with the exact answer of $\ln (2)$.

