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Preface

This is a set of notes which supplement my lectures on for course EE106 which is about
elementary analyisis and calculus. They are reasonably self contained but should be read as
well as other written material. There are so many books covering this material that I shall
recommend just four. These are:

1. Booth D. J. and Stroud K. A., Engineering mathematics, Palgrave MacMillan, (2007).

2. Kreyszig E., Advanced engineering mathematics, Wiley, (2010).

3. Hobson M. P. and Riley K. F., Essential mathematical methods for the physical sciences,
Cambridge University Press, (2011).

4. Spivak M., Calculus, Cambridge University Press, (2006).

The first of these four would be an adequate book for this course. The second assumes
that differentiation and integration are already known starts with differential equations; it
then moves on through many other more advanced topics most of which will be covered in a
second year engineering course.

The third book takes a slightly wider viewpoint but covers much the same material as
the second. Lastly the fourth book is almost exclusively concerned with calculus rather than
its applications. It is very well written and is also rigorous; this latter point means that it
is more suitable for a mathematics course than an engineering course, nevertheless it is still
worth having a look at in the library. One should always try to read as widely as one can.

Charles Nash



CHAPTER I

Introductory analysis

§ 1. Notation

W
E shall use N to denote the set of natural numbers 1, 2, . . ., in other words
N is the set of positive integers. We shall use Z to denote all the integers
. . . ,−2,−1, 0, 1, 2, . . . Lastly R and C will denote the real and complex numbers

respectively. This same information is often, and more conveniently, displayed by writing

N = {1, 2, . . .}

Z = {. . . ,−2,−1, 0, 1, 2, . . .}

R = {x : x is a real number}

C = {z : z is a complex number}

(1.1)

Let me just remind the reader that an equation like

R = {x : x is a real number} (1.2)

when read aloud yields
R is the set of x such that x is a real number

and similarly for the other examples given above.

§ 2. Sequences

A collection of objects arranged in some particular order is called a sequence. Let us look at
a few examples of sequences.

Example The first ten positive integers (arranged in increasing order)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (1.3)
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Notice that these integers are arranged in increasing order. This order is a vital property of
the sequence: if we change the order we create a new sequence. For instance we could reverse
the order in our sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 so as to give the new sequence

Example The first ten positive integers (arranged in decreasing order)

10, 9, 8, 7, 6, 5, 4, 3, 2, 1 (1.4)

We see that we could make many more sequences from the first ten positive integers. In fact,
we can now see, that there are as many such sequences as there are ways of ordering these
integers.

If we recall that the number of ways of ordering n things is n! (pronounced n factorial)
and

n! = n(n− 1)(n− 2) · · · 2 · 1 (1.5)

then we compute that the number of sequences that contain the ten integers
1, 2, 3, 4, 5, 6, 7, 8, 9, 10 is

10! = 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

= 3628800
(1.6)

which is a pretty large number.
Sequences need not consist of mere numbers but can be made from any sort of object

as long as one provides a rule for ordering them. For example one could have a sequence
consisting of the top 100 golfers in the world ordered by their earnings in the previous financial
year, or the top 10 football teams in a football league ordered by their point totals and so on.

Thus to discuss an arbitrary sequence it is useful to use an algebraic notation and write
a sequence of, say, 5 objects or elements, as

s1, s2, s3, s4, s5 (1.7)

Suppose then that we have a sequence consisting of the first seven odd positive integers then
we would write this as

1, 3, 5, 7, 9, 11, 13 (1.8)

But we could also write

s1, s2, s3, s4, s5, s6, s7

where s1 = 1, s2 = 3, s3 = 5, etc.
(1.9)

More compactly still we could write

s1, s2, s3, s4, s5, s6, s7

where sn = 2n− 1

and n = 1, 2, 3, 4, 5, 6, 7

(1.10)
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The point being that, as n runs through the 7 values 1, . . . 7, the expression 2n + 1 runs
through the 7 odd numbers 1, 3, . . . 13 comprising the sequence.

All the preceding sequences contained a finite number of elements; this need not be so:
many important sequences contain an infinite number of elements. We have

Example An infinite sequence

2, 4, 6, 8, 10, 12, . . . (1.11)

The sequence 1.11 above consists of all the even positive integers and is clearly infinite.
When a sequence is finite it may be quite important just how many sequences with the

same number of elements can be constructed.

Example A National Lottery

For example consider a national lottery where one chooses 6 numbers from the first 42 positive
integers. 1. We might then construct a sequence of all possible choices of 6 numbers from 42,
in this case we are not interested in the order the choices are placed in just the number of
elements in the sequence. This number—the number of ways of choosing 6 things from 42—is

(
42

6

)

=
42!

6! 36!

= 5245786

(1.12)

which we see is slightly under 5.25 million.
So the odds against winning the jackpot in this lottery are

1 in 5245786 (1.13)

Let us calculate how expensive it would be to bet on all the possible combinations. If we get
1 bet for e 1 euro then 5245786 bets would cost

e 5, 245, 786 (1.14)

This tells us something quite interesting: namely if the jackpot exceeds e 5.24 million or
so—which it occasionally does—then one can, in theory, emerge a net winner by betting on
all the possible 5245786 combinations. There are of course some drawbacks to this: how does
one place such a large number of bets in a reasonable time; also one might still lose if someone
else also had the winning combination thus causing the jackpot to be split. These drawbacks
would be somewhat offset by the large number of winning match 4 and match 5 combinations
which would be achieved though.

1 Nowadays our lottery uses 45 rather than 42, the reader can easily adjust the analysis here to fit that

case.
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§ 3. Series

If we have a sequence whose elements are real or complex numbers then we can add together
all its terms obtaining what is called a series. So a sequence such as

1, 4, 7, 10, 13 (1.15)

becomes the series
1 + 4 + 7 + 10 + 13 (1.16)

If we denote the series by S then we can write

S = 1 + 4 + 7 + 10 + 13 (1.17)

and since
1 + 4 + 7 + 10 + 13 = 35 (1.18)

we describe this fact by saying that “S is a series consisting of 5 terms whose sum is 35”. We
also labour the obvious somewhat by noting that the symbol S is also equal to the sum of
the series so that

S = 35 (1.19)

§ 4. Arithmetic series

Notice that in the series 1.17 above consecutive terms all differ by the same amount namely
3. Any series which has this property of consecutive terms all differing by the same amount
is referred to as an arithmetic series. Let us now examine this property in some more detail
some algebraic notation will be helpful as we can then be more general.

We only need to specify two things in order to know an arithmetic series completely:
these are the first term and the difference between consecutive terms. Let us denote the first
term by

a (1.20)

and the difference between consecutive terms by

d (1.21)

Now suppose there are exactly n terms in the arithmetic series then we shall denote a general
term in the series by ai where where each ai is given by the formula

ai = a+ id

i = 0, . . . (n− 1)
(1.22)
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We can now summarise all this by writing a completely arbitrary arithmetic series as the
expression

a0 + a1 + a2 + · · ·+ an−1

where ai = a+ id

i = 0, . . . (n− 1)

(1.23)

To see how this works in practice we return to the series 1.17 which is

S = 1 + 4 + 7 + 10 + 13 (1.24)

and we see that the first term is 1, so that a = 1 and the difference between consecutive terms
3 so d = 3. Thus, using ai = a+ id we find that

a0 = a+ 0 · d ⇒ a0 = 1

a1 = a+ d ⇒ a1 = 4

a2 = a+ 2d ⇒ a2 = 7

...

a4 = a+ 3d ⇒ a4 = 13

(1.25)

§§ 4.1 The sum of the terms in an arithmetic series

There is quite a simple formula for the sum of the terms in an arithmetic series. It is obtained
by writing the series out twice: once in the normal order and the second time in reverse order.
Let us see this in action: If we write out a general arithmetic series S with n terms out we
get

S = a0 + a1 + a2 + · · ·+ an−1 (1.26)

where we note that the last term is an−1 not an because otherwise we would have n+1 terms
instead of n. Now writing S out in reverse order we get

S = an−1 + an−2 + · · · a1 + a0 (1.27)

The last step is place both expressions together, one on top of the other, and add them giving

S = a0 + a1 + a2 + · · ·+ an−1

S = an−1 + an−2 + · · · a1 + a0

adding ⇒ 2S = (a0 + an−1) + (a1 + an−2) + · · · (an−1 + a0)

(1.28)

where we draw attention to the fact that we have deliberately bracketed the terms together
in pairs. The reason for this is that all the pairs are in fact equal to each other—indeed, if we
use the property that

ai = a+ (i− 1)d (1.29)
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we observe that
(a0 + an−1) = 2a+ (n− 1)d

(a1 + an−2) = 2a+ (n− 1)d

...

(an−1 + a0) = 2a+ (n− 1)d

(1.30)

Hence we conclude that

2S = (2a+ (n− 1)d) + (2a+ (n− 1)d) + · · ·+ (2a+ (n− 1)d)
︸ ︷︷ ︸

n terms

⇒ 2S = n(2a+ (n− 1)d)

⇒ S =
n(2a+ (n− 1)d)

2

(1.31)

So the sum of the first n terms of an arithmetic series

a+ (a+ d) + (a+ 2d) + · · ·+ (a+ (n− 1)d) (1.32)

is S where

S =
n(2a+ (n− 1)d)

2
(1.33)

Example The sum of the arithmetic series 1.17

Recall that 1.17 is the series
S = 1 + 4 + 7 + 10 + 13 (1.34)

with a = 1 and d = 3 and application of our formula 1.33 gives

S =
5(2 · 1 + 4 · 3)

2
= 35 (1.35)

just as it should.

Example The first 10000 odd numbers

For this example our series is

S = 1 + 3 + 5 + · · ·+ 19999 (1.36)

which can also be written as

S = a0 + a1 + · · ·+ an−1

with ai = 2i+ 1 and n = 10000
(1.37)
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Evidently we have
a = 1, d = 2 (1.38)

so using 1.33 we compute that

S =
n(2 + (n− 1)2)

2

⇒ S = n2
(1.39)

which is a useful formulae in its own right. We are dealing with the case where n = 10000
though we see that have a completely general formula which gives the sum of the first n odd
numbers; in any case for n = 10000 we find that

S = 100002 = 108 (1.40)

§ 5. Geometric series

In this section we shall deal with what are called geometric series. Here is a example.

Example A geometric series

S = 3 + 6 + 12 + 24 + 48 (1.41)

In 1.41 above we see that the first term of the series is 3 and that the next term is got by
multiplying 3 by 2 to get 6 and then 6 is multiplied by 2 to get its successor 12 and so on.
We can rewrite this to make this pattern more obvious; doing this we obtain

S = 3 + 6 + 12 + 24 + 48

= 3 + 3 · 2 + 3 · 22 + 3 · 23 + 3 · 24
(1.42)

Here is another geometric series

Example A geometric series where the terms get smaller

S = 5 +
5

3
+

5

32
+

5

33
+

5

34
+

5

35
(1.43)

Now to display an arbitrary geometric series all we have to do is to replace the first term 3
by a and to replace the multiplier 2 by r. An arbitrary geometric series, with n terms, is now
given by S where

S = a+ ar + ar2 + ar3 + · · ·+ arn−1 (1.44)
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again note that there are only n terms despite the fact that the last term is arn−1. A piece
of terminology to be aware of is that the multiplier r is often referred to as the ratio of the
series, this is because the ratio of successive terms is equal to r. In algebraic form we are
simply observing that, if ari is a term in a geometric series then,

r =
ari

ari−1
(1.45)

By returning to examples 1.41 and 1.43 we can easily verify that for 1.41 we have

a = 3, r = 2 (1.46)

while for 1.43 we have

a = 5, r =
1

5
(1.47)

Note that when r > 1 the terms in the series get successively bigger as the series progresses
while for r < 1 the terms get smaller; it is clear, too, that were we to have r = 1 then the
terms would stay the same and not change at all, thereby yielding a rather a boring series.

Notice that there is a certain similarity between arithmetic and geometric series namely:
in arithmetic series the terms are constructed b repeated adding of the constant d, while
in geometric series the terms are constructed by repeated multiplication by the constant r.
Hence the main change in passing from arithmetic to geometric series is to trade addition for
multiplication.

§§ 5.1 The sum of the terms in a geometric series

It is now time for us to derive a formula for the sum of the terms in a geometric series.
What we do is to write out S and then subtract from it the quantity rS. This gives us

the expressions
S = a+ ar + ar2 + ar3 + · · ·+ arn−1

⇒ rS = ar + ar2 + ar3 + · · ·+ arn−1 + arn

⇒ S − rS = a− arn

⇒ (1− r)S = a− arn

⇒ S =
(a− arn)

(1− r)

=
a(1− rn)

(1− r)

(1.48)

So to summarise: the sum to n terms of a geometric series with first term a and ratio r is
given by

S =
a(1− rn)

(1− r)
(1.49)
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We can conclude this section by quickly computing the sums of the terms in our two
examples 1.41 and 1.43.

For 1.41 where, n = 5, a = 3 and r = 2 we find that

S =
3(1− 25)

(1− 2)
= 3 · 31 = 93 (1.50)

a fact which can be verified by direct calculation.
Lastly for 1.43 we have n = 6, a = 5 and r = 1/3 giving

S =
5
(

1−
(
1
3

)6
)

(
1− 1

3

) =
5 · 364

35
=

1820

243
(1.51)

a fact which is again verifiable by direct calculation.

§ 6. Limits and infinite series

A series can have an infinite number of terms: for example consider the series

Example A nice infinite series

S = 1 +
1

22
+

1

32
+

1

42
+ · · ·

=
∞∑

n=1

1

n2

(1.52)

Such a series is called an infinite series and its sum S may or may not be finite. It turns out
that this series 1.52 does have a finite value and in fact it is known that 2

∞∑

n=1

1

n2
=

π2

6
(1.53)

Unfortunately S can also be infinite rendering the series not so useful as in the following.

Example A not so nice infinite series

S = 1 +
1

2
+

1

3
+

1

4
+ · · ·

=

∞∑

n=1

1

n

(1.54)

2 This is far from obvious and so we do not worry about how to prove this here; we merely want to use

the result. It is easy to convince oneself experimentally of the result by using a calculator or a computer to

sum up a finite number of terms.



10 Introductory analysis and calculus

For this series 1.54 one finds that 3 S = ∞. An infinite series can also have a sum S which
refuses to settle down to any fixed value as one sums the terms but just oscillates as shown
next.

Example An oscillating series

S = 2− 2 + 2− 2 + 2− · · · (1.56)

It is clear that as we add up the terms of 1.56 the answer is 2 or 0 depending on whether we
stop after an odd or an even numbers of terms. Thus S refuses to tend to any fixed value.
Instead it oscillates between the values 0 and 2.

The terminology used to describe the behaviour in these three representative examples
of infinite series is that a series such as 1.52 for which S has a finite value is called convergent;
but a series such as 1.54 for which S tends to infinity is called divergent, the oscillatory series
1.56 is also called divergent even though no infinite value of S is encountered. Divergent and
convergent series can be treated with more precision by introducing the idea of a limit to
which we now turn.

A limit is an extremely widespread and fundamental concept in mathematics and it is
time we met it. In the present context it is applied to a sequence but it is applied to functions
as well and the same idea underlies both situations. We do not need the notion of the limit
for finite sequences (we could use it but it we gain nothing) so we shall just explain what
happens for infinite sequences.

Our definition 4

Definition (The limit of an infinite sequence) An infinite sequence

{s1, s2, s3, . . .} (1.57)

approaches the limit s as n tends to infinity if we can make sn as near as we wish to s by
requiring that n be large enough. We then write this symbolically as

lim
n→∞

sn = s or sn → s, as n → ∞ (1.58)

3 For those interested in why this series diverges we digress briefly to give a little more information on the
matter. If once sums up just N terms one finds that for N large one has

1 +
1

2
+ · · ·

1

N
→ lnN + γ (1.55)

where γ is a constant. So as N increases S goes to infinity because lnN does.
4 This definition is not as logically tight or rigorous as it would be in an advanced mathematics course

but this is deliberate: it consumes more time to be rigorous, and would limit the amount of material we could

cover. Rigour does have its place though in an appropriate mathematics course. The same remark will apply

to subsequent definitions that we shall give in this course.
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Return now to any infinite series

S = s1 + s2 + s3 + · · ·

=

∞∑

i=1

si
(1.59)

and first let us sum up only the first N terms giving what is called the partial sum SN where

SN = s1 + s2 + s3 + · · ·+ sN

=

N∑

i=1

si
(1.60)

By doing this for successively larger and larger values of N we can construct an infinite
sequence out of these partial sums, namely the sequence

{S1, S2, S3, . . .} (1.61)

So this is the way we define convergence of the series S:

Definition (Convergence of an infinite series) The infinite series

s1 + s2 + s3 + · · · (1.62)

converges to the value S if

lim
N→∞

SN = S or equivalently SN → S, as N → ∞ (1.63)

In words one says that the series s1 + s2 + s3 + · · · converges to S if its sequence of partial
sums {S1, S2, S3, . . .} has the limit S.

It is important to realise that when an infinite series does not converge this can be either
because SN → ∞ as N → ∞ as is the case in 1.54; or because SN remains finite but oscillates
as in 1.56. It is time to consider geometric series again.

Example The convergence of the geometric series a+ ar + ar2 + ar3 + · · · when r < 1

If we take the infinite geometric series

a+ ar + ar2 + ar3 + · · · (1.64)
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then its partial sum SN is simply what is stated in the formula of 1.49 so we have

SN =
a(1− rN )

(1− r)
(1.65)

so

lim
N→∞

SN = lim
N→∞

a(1− rN )

(1− r)
(1.66)

But all we need to know on the RHS of 1.66 is limN→∞ rN about which we can immediately
say that

lim
N→∞

rN =

{
∞, if r > 1
1, if r = 1
0, if r < 1

(1.67)

But we have 5 the condition r < 1 so we have limN→∞ rN = 0 which on insertion into 1.66
gives

lim
N→∞

SN =
a

(1− r)
(1.68)

So the sum S of the infinite series is given by

S = a+ ar + ar2 + ar3 + · · ·

=
a

(1− r)
, provided r < 1

(1.69)

If r ≥ 1 it is easy to verify that any geometric series diverges; it is also easy to check from
the formula 1.33 that all arithmetic series diverge if we allow the number of terms to become
infinite. We shall only consider convergent infinite series. We can do the computation of an
infinite sum for a specific example.

Example The infinite series

S = 5 +
5

3
+

5

32
+

5

33
+

5

34
+ · · · (1.70)

.

Here we can observe straightaway that

a = 5, and r =
1

3
(1.71)

5 Actually we also allow r to be negative as well as positive and to take account of that the condition

r < 1 must be replaced by −1 < r < 1, i.e. |r| < 1. Still more: r could be complex but then the condition

|r| < 1 is still sufficient though |r| is now extended to complex numbers r cf. §6.
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so 1.69 gives us at once the result that

S =
5

(1− 1/3)
=

15

2
(1.72)

Before leaving this subject we shall consider a slightly more exotic application of summing
infinite geometric series.

Example A mathematical snowflake

First we must make the snowflake by using triangles as the building blocks. We start with
the triangle

Fig. 1: The basic triangle for the snowflake.

Now we add 3 smaller triangles on to the sides of this basic triangle yielding what is
shown in fig. 2

Fig. 2: The second figure for the snowflake.
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We can do this yet again to get fig. 3

Fig. 3: The third figure for the snowflake.

and doing it once more gives

Fig. 4: The fourth figure for the snowflake.

Now we have a figure which looks a bit like a snowflake and the idea is to repeat this
process an infinite number of times. The figure that results from this process is then our
snowflake 6

Having made our snowflake the calculational task we set ourselves is to find the area
contained inside it. This turns out to be given by an infinite geometric series which we now

6 This object is sometimes called the Koch snowflake after a mathematician called Koch. Its perimeter is

actually infinitely long and this jagged perimeter is an example of what is called a fractal. Fractals turns out

to have applications in many areas including telecommunications and image analysis and compression.
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obtain and sum.

Example The area of the snowflake

Let the area of the large equilateral triangle shown in fig. 1 be

a (1.73)

then the smaller triangles added on in fig. 2 are also equilateral and have a side which is 1/3
of the length of that of the large triangle. Thus they have an area of a/32 or

a

9
(1.74)

Since three triangles were added on to get fig. 2 the area of the object depicted in fig. 2 is

a+
3a

9
(1.75)

Next time, to get fig. 3, we add even smaller triangles whose area is 1/9 that of the previous
ones, that is their area is

a

92
(1.76)

and since a count shows that we add 2 of these for each vertex of fig. 2 then we add 6 ·2 = 3 ·4
of these triangles giving the area of the “flake” of fig. 3 to be

a+
3a

9
+

3 · 4a

92
(1.77)

It is then easy to check, but we shall just accept, that the area, A say, after doing this infinitely
many times is given by

A = a+
3a

9
+

3 · 4a

92
+

3 · 42a

93
+ · · ·

= a+
3

9

(

a+
4a

9
+

42a

92
+ · · ·

) (1.78)

But we can easily see that the expression

a+
4a

9
+

42a

92
+ · · · (1.79)

is an infinite geometric series. hence we know that

a+
4a

9
+

42a

92
+ · · ·

=
a

(1− 4/9)
=

9a

5

(1.80)
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and if we substitute this result into 1.78 we find that

A = a+
3

9

9a

5

=
8a

5

(1.81)

So we have learned the interesting fact that the snowflake has an area given by

A =
8a

5
(1.82)

where a is the area of the basic triangle of fig. 1.

§§ 6.1 Convergence of infinite series in general: the comparison and ratio tests

We have seen that an (infinite) geometric series converges when r < 1; for other infinite series
there are several well known tests which are used to tell whether an infinite series converges.
We shall just look at two of these: they are called the comparison test and the ratio test. Both
are widely used.

§§ 6.2 The comparison test

Take two infinite series
∞∑

n=1

an and

∞∑

n=1

bn (1.83)

and suppose that
0 ≤ an ≤ bn for all n (1.84)

Then
∞∑

n=1

bn convergent ⇒
∞∑

n=1

an convergent (1.85)

So the convergence of one series is decided by its comparison with another. Here is a sample
of the the comparison test in action.

Example Convergence of the two series

∞∑

n=1

1

n3
and

∞∑

n=1

1

n2
(1.86)

For this example we set

an =
1

n3
and bn =

1

n2
(1.87)
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and we observe that
1

n3
≤

1

n2
, for n = 1, 2, 3, 4, . . . (1.88)

But we know already that
∑

∞

n=1 (1/n
2) converges because we learn from consulting 1.53 that

∞∑

n=1

1

n2
=

π2

6
(1.89)

Hence, applying the comparison test 1.85, we conclude that

∞∑

n=1

1

n3
converges (1.90)

Incidentally the same argument would work with the series

∞∑

n=1

1

np
, for p > 2 (1.91)

So the comparison test also gives the result that 7

∞∑

n=1

1

np
converges for p > 2 (1.92)

§§ 6.3 The ratio test

Let
s1 + s2 + s3 + · · ·

=

∞∑

n=1

sn
(1.93)

be an infinite series. Form the ratio sn+1/sn; now if we define r by writing

r = lim
n→∞

∣
∣
∣
∣

sn+1

sn

∣
∣
∣
∣

(1.94)

then the series
∑

∞

n=1 sn converges if
r < 1 (1.95)

We can see how the ratio test at work in the following example.

7 Actually, just for information, we add that still more is known: this is that
∑

∞

n=1
(1/np) converges

precisely when p > 1.
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Example Convergence of the series
∞∑

n=1

1

n!
(1.96)

Forming the desired ratio we see that we have to evaluate the limit

r = lim
n→∞

∣
∣
∣
∣
∣

1
(n+1)!

1
n!

∣
∣
∣
∣
∣

= lim
n→∞

1

(n+ 1)

= 0

(1.97)

So we have found that r < 1 and so
∞∑

n=1

1

n!
(1.98)

converges. In fact most of you probably know already that if e = 2.7182818284 . . . is the base
of natural logarithms then

e =

∞∑

n=0

1

n!
(1.99)

and

ex =

∞∑

n=0

xn

n!
(1.100)

so for e to be a finite number at all the series 1.98 has to converge.

§ 7. Limits, functions and continuity

So far we have considered limits that arose in the study of sequences and series; however
limits also arise all the time when working with functions. Still more important, as we shall
see later, is the fact that the whole of differential and integral calculus is based on appropriate
limits of functions.

We begin with a definition similar to that used for sequences in 1.57 above.

Definition (The limit of a function) A function f(x) approaches the limit L near x = a if
we can make f(x) as close as we like to L by requiring x to be close enough to a. Symbolically
we then write

lim
x→a

f(x) = L or f(x) → L, as x → a (1.101)

The first point to notice is that if function f(x) has a graph which passes through a point a
and has a value L there then its limit at a is indeed L. For example consider the perfectly
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ordinary graph shown in fig. 5 below. This is the graph of the function f(x) = x2 − 10x+ 2
and when x = 12 this function f(x) has the value 26.

50

100

150

200

–10 –5 5 10 15 20
x

Fig. 5: The function x2 − 10x+ 2.

So, for this function x2 − 10x+ 2, we can say

lim
x→12

x2 − 10x+ 2 = 26 (1.102)

The second point to notice about limits of functions (and this one is not so trivial as the
first one) is that a function may have a limit L but my never attain the value L but just get
arbitrarily close to it. This phenomenon is shown in fig. 6.

0

0.2

0.4

0.6

0.8

1

1 2 3 4
x

–3

–2

–1

1

2

3

–3 –2 –1 1 2 3
x

Fig. 6: The functions e−x and 1/x.

Figure 6 shows the graph of e−x on the left and the graph of 1/x on the right.
For the case of e−x we see that, as x → ∞, then e−x → 0; but e−x never actually equals

zero (unless x = ∞ which is not allowed) it just gets closer and closer to zero. Hence we can
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say that
lim
x→∞

e−x = 0 (1.103)

While for the graph of 1/x we observe that, if we set x equal to a positive value, say
x = 1, and then let x → 0, then 1/x tends to +∞ and at x = 0 itself 1/x is infinite and so
undefined.

Alternatively we also can see that if we set x equal to a negative value, say x = −1 then
1/x tends to −∞ and is still undefined at x = 0. Hence 1/x is trying to have two illegal values
at 0: The first is seen when we approach 0 through positive values from the right we write
this one as

lim
x→0+

1

x
= ∞ (1.104)

where the notation x → 0+ means that 0 is approached from the right by going through
positive values. The second is seen by approaching 0 through negative values and is written
symbolically as

lim
x→0−

1

x
= −∞ (1.105)

where the notation x → 0− this time means that 0 is approached from the left through
negative values.

We summarise matters by noting what was in common about the limits of the two
functions e−x and 1/x just discussed: this was that for each function the limit evaluated was
never properly attained by the function.

In the first case this was because x would have to have an illegal value (namely ∞) to
allow the function to reach its limiting value; while in the second case x takes on a perfectly
legal limiting value but the function would have to take on illegal values (namely ∓∞) for
the limit to be attained. The upshot is the same in both cases and can be summarised by
writing 8

lim
x→a

f(x) = L BUT

{

f(a) 6= L
because either a or L is an illegal value

(1.106)

This matter of whether f(a) = L or not, when limx→a f(x) = L, is really what underlies
the notion of continuity—a notion we are now ready to examine.

§§ 7.1 Continuity

Informally we can describe a continuous function as being one whose graph, once begun, can
be completed without lifting the writing implement from the paper. With this description we

8 For the reader who needs reminding and doesn’t want to turn the pages back we gives the values of a

and L for both examples. For f(x) = e−x we had a = ∞ and L = 0 and for f(x) = 1/x we had x = 0 and

L = ∓∞.
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can immediately display an example of a continuous and a discontinuous function cf. fig. 7
below.
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Fig. 7: The functions x4 − 2x2 and f(x) =

{
x, if x > 1
x− 1, if x ≤ 1

In fig. 7 the function on the left is continuous while the function f(x) on the right is
discontinuous since it ‘jumps’ at the value x = 1. The value x = 1 is then called a point of
discontinuity of f(x). We can easily use limits to get to the bottom of what happens at the
point of discontinuity of f .

We simply investigate the value x = 1 by evaluating the pair of limits

lim
x→1−

f(x) and lim
x→1+

f(x) (1.107)

What we find from fig. 17 is that the limit from the left limx→1− f(x) is given by

lim
x→1−

f(x) = 0 (1.108)

while the limit from the right limx→1+ f(x) is given by

lim
x→1+

f(x) = 1 (1.109)

and we note that these disagree. This then the is ‘signature’ of the discontinuity namely the
fact that

lim
x→1−

f(x) 6= lim
x→1+

f(x) (1.110)

The more precise definition of continuity can now be unveiled.
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Definition (Continuity) A function f(x) is continuous at x = a if 9

lim
x→a

f(x) = f(a) (1.111)

It is clear too for limx→a f(x) = f(a) then both the left and right limits must both exist and
agree and they cannot do this when limx→a− f(x) 6= limx→a+ f(x).

For convenience of examination we display together our two examples of discontinuous
functions in fig. 8
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Fig. 8: The function 1/x and the function f(x) =

{
x, if x > 1
x− 1, if x ≤ 1

1

x
has







lim
x→0−

1

x
= −∞

lim
x→0+

1

x
= ∞

and f(x) has

{
lim

x→1−
f(x) = 0

lim
x→1+

f(x) = 1
(1.112)

It is now easy to see take in the visual signs of the discontinuities from the graphs and also
the more precise information given in the caption 1.112.

Discontinuous functions are sometimes thought to be abnormal or in some way unde-
sirable. This is a mistake. In fact discontinuous functions arise quite naturally in switching
electrical systems on and off. Also the current practice of digitising many forms of transmit-
ted data such as telephone conversations, modem data, and radio and television signals shows
that functions which take integer values as opposed to any real value are very common.

9 It is important to realise that the point x = a at which a function may or may not be continuous is of

necessity finite. one does not evaluate functions at infinite points. This means that the example of 1.103 where

we pointed out that limx→∞ e−x = 0 is not an example of a discontinuity, it is simply an example of a function

which does not attain one of its limiting values. In fact the function e−x is continuous everywhere—that is it

is continuous for all finite x.



Introductory analysis 23

Example A simple switch

If we take just a electrical switch which is simply turned on and off repeatedly generating a
constant voltage V when on and 0 when off the we get the simple square wave graph below
which is manifestly discontinuous.
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Fig. 9: A square wave

Example A digital thermometer

Another discontinuous function is obtained if we take the output in 0C, say, for a series
of measurements made with a thermometer placed inside a car engine; the output of this
device being digital. One can imagine that this output being fed into the energy management
computer—a feature of all present day cars—so that it may make adjustments to other engine
parameters such as fuel supply rate, air mixture rate, spark plug and valve timings and so on.
In any case the graph is just a somewhat periodic looking collection of dots and is depicted
in fig. 10.
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Fig. 10: A digital thermometer

The preceding two examples illustrate that functions with discontinuities are can be
perfectly practical and real functions not just esoteric pathological mathematical examples.
Note too that a graph such as that of the digital thermometer, which just consists of dots, is
discontinuous everywhere not just at one point as in the second graph of fig. 8, or at a series
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of isolated points as in fig. 9.

Example A capacitor being charged

As our final example we take a continuous function. The graph of 28 shows the function
Q(t as a function of time t where Q(t) is the charge on a capacitor as it is being charged up.
Incidentally the function Q(t) being plotted is given by

Q(t) = 1− exp(−4.5t) (1.113)

so that the capacitor will have a charge Q = 1 only if t becomes infinite. 10 Hence in theory,
the capacitor takes an infinite time to charge fully; of course in practice it reaches 99% of its
final charge in a finite time.
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Fig. 11: A charging capacitor

Having been introduced to the notions of limits and continuous functions we are ready
to begin our work on calculus; this is the topic of the next chapter.

10 In the language of limits this is just the statement that limt→∞ Q(t) = 1.


