OLLSCOIL NA hÉIREANN MÁ NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH

THEORETICAL PHYSICS

Fourth Year

SEMESTER 1

2017 - 2018

Computational Physics II MP468 Solutions

Exam

1. (a) If X is uniformly distributed between 0 and 1 $(p(x) = 1, x \in [0, 1])$ and f is a function, How is the random variable Y = f(X) distributed?

[15 marks]

(b) Use the transformation method to construct a recipe for obtaining pseudorandom numbers in the interval $[0, \sqrt{e-1}]$, with probability distribution

$$p(y) = \frac{2y}{y^2 + 1},$$
(1)

given a generator of uniform pseudo-random numbers between 0 and 1

[40 marks]

(c) List the main steps of the rejection method for generating a pseudo-random number distributed according to f(x), given a constant $M \in \mathbb{R}$ and generators for uniform pseudo-random numbers between 0 and 1 and pseudo-random numbers distributed according to g(x) such that f(x) < Mg(x), for all $x \in \mathbb{R}$. Prove that the rejection method produces a variable Y distributed according to f(x).

[45 marks]

2. (a) If x_i are N independent uniformly distributed random points within a d-dimensional volume V , and

$$I_{\rm MC} = \frac{V}{N} \sum_{i=1}^{N} f(x_i), \qquad (2)$$

show that the expectation value of I_{MC} is equal to the integral of the function f over the volume V,

$$\langle I_{\rm MC} \rangle = \int_V f(x) dx.$$
 (3)

Explain how this relation can be used to compute the integral I using Monte Carlo integration.

[20 marks]

(b) Show that the variance of $I_{\rm MC}$ is given by

$$\operatorname{var}(I_{\mathrm{MC}}) = \langle (I_{\mathrm{MC}} - \langle I_{\mathrm{MC}} \rangle)^2 \rangle = \frac{V^2}{N} [\langle f^2 \rangle - \langle f \rangle^2]$$
(4)

[40 marks]

(c) Assuming you have a random number generator to generate pseudo-random numbers $x \in [0, \infty)$ with distribution $p(x) = \lambda \sin^2(x) \exp(-x)$ (where λ is a normalising constant), explain how you would compute the integral

$$I = \int_0^\infty \sin(x)\sin(2x)e^{-x}dx \tag{5}$$

using Monte Carlo integration with importance sampling.

3. (a) Using symmetric first and second derivatives, write down the discretised version of the equation

$$A\frac{\partial^2 \phi}{\partial x^2} + B\frac{\partial^2 \phi}{\partial y^2} + C\frac{\partial \phi}{\partial x} + D\frac{\partial \phi}{\partial y} = \rho(x, y), \quad 0 \le x, y \le L, \tag{6}$$

where A, B, C and D are known constants and $\rho(x, y)$ is a known function of x and y, on a square symmetric grid of $N \times N$ points with zero Dirichlet boundary conditions.

[25 marks]

(b) Explain how the resulting equation can be written as a matrix equation, $M\Phi = B$, where M is a sparse $N^2 \times N^2$ matrix and B is a known vector of length N^2 . Write down expressions for M and B, taking the boundary conditions into account.

[25 marks]

(c) Consider the matrix equation

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b},\tag{7}$$

where **A** is a known $N \times N$ matrix, **b** is a known vector of length N, and **x** is a vector of N unknowns $x_i, i = 1, \dots, N$. Explain how this equation may be solved using gaussian elimination.

[25 marks]

(d) Show that the number of floating point operations (multiplication, division, addition, subtraction) required to obtain the solution this way grows like N^3 as N increases.

[25 marks]

4. (a) Consider the 2-dimensional Poisson equation

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \rho(x, y). \tag{8}$$

Explain how the solution of this equation can be obtained by solving the diffusion equation

$$\frac{\partial \phi}{\partial t} = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} - \rho(x, y), \tag{9}$$

with an arbitrary initial condition for $\phi(x, y)$.

[15 marks]

(b) Write down the Forward Time Centred Space discretisation scheme for this equation, assuming equal lattice spacings ax = ay = a in both space directions, and a spacing Δt in the time direction.

[35 marks]

(c) Using the von Neumann stability criterion for this scheme, $\Delta t \leq a^2/4$, derive the *Jacobi* method for solving the Poisson equation, and explain how it may be modified to obtain the *Gauss-Seidel* method.

[25 marks]

(d) Assuming that each iteration reduces the difference between your estimate and the true solution by a factor ρ_s (called the spectral radius), find how many iterations are required to reduce this difference by a factor 10^{-p} .

For the Poisson equation on a square $N \times N$ grid with homogeneous Dirichlet boundary conditions, the spectral radii for the Jacobi and Gauss-Seidel methods are given by

Jacobi:
$$\rho_J = \cos\left(\frac{\pi}{N}\right)$$
, Gauss-Seidel: $\rho_{GS} = \cos^2\left(\frac{\pi}{N}\right)$. (10)

Use this to show that the Gauss-Seidel method converges twice as fast as the Jacobi method, and that the number of iterations required for both to converge increases as N^2 in the limit of large N.

[25 marks]

Solutions: Question 1

(a) If X is uniformly distributed between 0 and 1, f is a function and we define the random variable Y = f(X), we must have

Probability
$$X \in [a, b]$$
 = Probability $Y \in [f(a), f(b)],$ (11)

$$\implies \int_{a}^{b} P_X(x) dx = \int_{f(a)}^{f(b)} P_Y(y) dy, \qquad (12)$$

$$= \int_{a}^{b} P_{Y}(f(x)) |f'(x)| dx.$$
 (13)

As this must be true for every interval $[a, b] \subset [0, 1]$, we have

$$P_Y(y) = P_Y(f(x)) = \frac{P_X(x)}{|f'(x)|} = \frac{1}{|f'(x)|}.$$
(14)

[15 marks]

(b) We want to find a function f such that, given X is uniformly distributed between 0 and 1, Y = f(X) is distributed according to

$$p(y) = \frac{2y}{y^2 + 1},\tag{15}$$

We know that

Probability $X \in [a, b]$ = Probability $Y \in [f(a), f(b)],$ (16)

$$\implies \int_{a}^{b} P_X(x) dx = \int_{f(a)}^{f(b)} P_Y(y) dy, \qquad (17)$$

$$\implies \int_0^x dx' = \int_0^y \frac{2y'}{y'^2 + 1} dy', \tag{18}$$

$$\implies x = \int_{1}^{y + 1} \frac{d\alpha}{\alpha},\tag{19}$$

$$= [\ln(\alpha)]_1^{y^2+1} = \ln(y^2+1)$$
(20)

Inverting this gives

$$y = \sqrt{e^x - 1}.\tag{21}$$

[20 marks]

Hence, generating a uniformly distributed number X between 0 and 1 and applying the function $f(x) = \sqrt{e^x - 1}$ produces a number Y which is distributed according to (15).

[20 marks]

- (c) Given a constant $M \in \mathbb{R}$, the following three steps will produce a random number Y distributed according to f(x) given generators for producing random numbers u distributed uniformly between 0 and 1 and X distributed according to g(x).
 - (i) Generate a random number X according to f(x).
 - (ii) Generate a uniformly distributed random number u between 0 and 1.
 - (iii) If u < f(X)/Mg(X), accept Y = X. Other wise reject X and execute these three steps again.

[20 marks]

To prove Y is distributed according to f(x), we first show that the probability of Y being less than x is given by

$$P(Y < x) = \int_{-\infty}^{x} f(\tilde{x}) d\tilde{x}.$$
(22)

We note, for Y to be less than x, two things must be true. Firstly, the random number u must be less than f(X)/Mg(X). Then, provided that's true, X must be less than x. Hence, we have

$$P(Y < x) = P(X < x | u < f(X) / Mg(X)),$$
(23)

$$= \frac{P(X < x, u < f(X)/Mg(X))}{P(u < f(X)/Mg(X))}.$$
(24)

We now note, that since X and u are independent random variables, the tuple (X, u) is distributed in the plane according to the product of distributions for X and u.

$$(X, u) \sim P(x, y) = g(x) P_{\text{uni}}^{[0,1]}(y).$$
 (25)

Rewriting the probabilities appearing in (24) as integrals of the above distribution yields

$$P(Y < x) = \frac{\int_{-\infty}^{x} \left(\int_{0}^{f(\tilde{x})/Mg(\tilde{x})} g(\tilde{x}) dy \right) d\tilde{x}}{\int_{-\infty}^{+\infty} \left(\int_{0}^{f(\tilde{x})/Mg(\tilde{x})} g(\tilde{x}) dy \right) d\tilde{x}}$$
(26)

$$=\frac{\int_{-\infty}^{x} \left[f(\tilde{x})/Mg(\tilde{x})\right]g(\tilde{x})d\tilde{x}}{\int_{-\infty}^{+\infty} \left[f(\tilde{x})/Mg(\tilde{x})\right]g(\tilde{x})d\tilde{x}}$$
(27)

$$=\frac{\int_{-\infty}^{x} f(\tilde{x})d\tilde{x}}{\int_{-\infty}^{+\infty} f(\tilde{x})d\tilde{x}}$$
(28)

$$= \int_{-\infty}^{x} f(\tilde{x}) d\tilde{x}$$
⁽²⁹⁾

The probability density of Y is given by the derivative of its cumulative distribution. So the distribution of Y must be

$$P_Y(y) = \frac{d}{dx} \left(\int_{-\infty}^x f(\tilde{x}) d\tilde{x} \right) \Big|_{x=y} = f(y), \tag{30}$$

proving that Y is distributed according to f(x).

[25 marks]

Solutions: Question 2

(a) If X is uniformly distributed inside the d-dimensional volume V, then the expectation value of the quantity f(X) is

$$\langle f \rangle = \int_{V} f(x) P_{\text{uni}}^{V}(x) dx = \int_{V} \frac{f(x)}{V} dx.$$
 (31)

Hence the expectation value of $I_{\rm MC}$ is

$$\langle I_{\rm MC} \rangle = \frac{V}{N} \sum_{i=1}^{N} \langle f \rangle = \frac{V}{N} \left(N \langle f \rangle \right),$$
(32)

$$=V\int_{V}\frac{f(x)}{V}dx = \int_{V}f(x)dx.$$
(33)

For the first equality we used the fact that the x_i s are independent. Hence the expectation value of $I_{\rm MC}$ is the integral of f over the region V.

Page 6 of 11

[20 marks]

(b)

$$\operatorname{var}(I_{\mathrm{MC}}) = \langle (I_{\mathrm{MC}} - \langle I_{\mathrm{MC}} \rangle)^2 \rangle, \tag{34}$$

$$= \langle (I_{\rm MC})^2 \rangle - \langle I_{\rm MC} \rangle^2, \tag{35}$$

$$= \left\langle \left(\frac{V}{N} \sum_{i=1}^{N} f(x_i) \right)^2 \right\rangle - \left\langle \frac{V}{N} \sum_{i=1}^{N} f(x_i) \right\rangle^2, \tag{36}$$

$$= \frac{V^2}{N^2} \left[\left\langle \left(\sum_{i=1}^N f(x_i) \right)^2 \right\rangle - \left\langle \sum_{i=1}^N f(x_i) \right\rangle^2 \right], \qquad (37)$$

$$= \frac{V^2}{N^2} \left[\left\langle \sum_{i=1}^N f(x_i)^2 + \sum_{\substack{i,j=1\\i\neq j}}^N f(x_i)f(x_j) \right\rangle - \left(N\langle f \rangle\right)^2 \right], \quad (38)$$

$$= \frac{V^2}{N^2} \left[N \langle f^2 \rangle + \sum_{\substack{i,j=1\\i \neq j}}^N \langle f \rangle \langle f \rangle - N^2 \langle f \rangle^2 \right], \tag{39}$$

$$= \frac{V^2}{N^2} \left[N \langle f^2 \rangle + \frac{N(N-1)}{N} \langle f \rangle^2 - N^2 \langle f \rangle^2 \right], \tag{40}$$

$$=\frac{V^2}{N}\left[\langle f^2\rangle - \langle f\rangle^2\right].\tag{41}$$

[40 marks]

(c) Multiplying and dividing the integrand by p(x) yields

$$I = \int_0^\infty \sin(x)\sin(2x)e^{-x}dx \tag{42}$$

$$= \int_0^\infty \sin(x)\sin(2x)e^{-x}\frac{p(x)}{p(x)}dx \tag{43}$$

$$= \int_{0}^{\infty} \frac{\sin(x)\sin(2x)e^{-x}}{\lambda\sin^{2}(x)e^{-x}} p(x)dx$$
(44)

$$= \int_0^\infty \frac{2\sin^2(x)\cos(x)}{\lambda\sin^2(x)} p(x)dx \tag{45}$$

$$= \int_0^\infty \frac{2\cos(x)}{\lambda} p(x) dx \tag{46}$$

[25 marks]

Hence, to compute I using Monte Carlo integration with importance sampling one can generate N pseudo-random numbers x_i distributed under p(x) and compute

$$I = \sum_{i=1}^{N} \frac{2\cos(x_i)}{\lambda} \tag{47}$$

[15 marks]

Solutions: Question 3

(a) The symmetric finite difference equation for the first derivative of a function f is

$$f'(x) \to \frac{f(x+a) - f(x-a)}{2a}.$$
 (48)

The symmetric finite difference equation for the second derivative of a function f is

$$f''(x) \to \frac{f(x+a) - 2f(x) + f(x-a)}{a^2}.$$
 (49)

We discretise the defined square region of the x, y-plane into a symmetric $(N+2) \times (N+2)$ grid, with lattice spacing $a = \frac{L}{N+1}$. For a function $\phi(x, y)$ on the interior points of the lattice we write

$$\phi(x,y) = \phi(ia,ja) = \phi_{i,j},\tag{50}$$

where $i, j = 1 \cdots N$. The first and second derivatives, at interior points of the lattice, are then given by

$$\frac{\partial \phi}{\partial x}(x,y) \to \frac{\phi_{i+1,j} - \phi_{i-1,j}}{2a},\tag{51}$$

$$\frac{\partial \phi}{\partial x}(x,y) \to \frac{\phi_{i,j+1} - \phi_{i,j-1}}{2a},\tag{52}$$

$$\frac{\partial^2 \phi}{\partial x^2}(x,y) \to \frac{\phi_{i+1,j} - 2\phi_{i,j} + \phi_{i-1,j}}{a^2},\tag{53}$$

$$\frac{\partial^2 \phi}{\partial y^2}(x,y) \to \frac{\phi_{i,j+1} - 2\phi_{i,j} + \phi_{i,j-1}}{a^2}.$$
(54)

[10 marks]

Substituting these into the differential equation yields

$$\rho(x,y) = A \frac{\partial^2 \phi}{\partial x^2} + B \frac{\partial^2 \phi}{\partial y^2} + C \frac{\partial \phi}{\partial x} + D \frac{\partial \phi}{\partial y}, \tag{55}$$

$$\rightarrow A \frac{\phi_{i+1,j} - 2\phi_{i,j} + \phi_{i-1,j}}{a^2} + B \frac{\phi_{i,j+1} - 2\phi_{i,j} + \phi_{i,j-1}}{a^2}$$
(56)

$$+ C \frac{\phi_{i+1,j} - \phi_{i-1,j}}{2a} + D \frac{\phi_{i,j+1} - \phi_{i,j-1}}{2a},$$
(57)

$$= \frac{1}{a^2} \left[\left(A + \frac{Ca}{2} \right) \phi_{i+1,j} + \left(A - \frac{Ca}{2} \right) \phi_{i-1,j} \right]$$
(58)

$$+\left(B+\frac{Da}{2}\right)\phi_{i,j+1}+\left(B-\frac{Da}{2}\right)\phi_{i,j-1}-4\phi_{i,j}\right]$$
(59)

[15 marks]

(b) We first define $\tilde{\rho}_{i,j} = a^2 \rho(x, y)$ so we can write

$$\tilde{\rho}_{i,j} = \left(A + \frac{Ca}{2}\right)\phi_{i+1,j} + \left(A - \frac{Ca}{2}\right)\phi_{i-1,j} \tag{60}$$

$$+\left(B+\frac{Da}{2}\right)\phi_{i,j+1}+\left(B-\frac{Da}{2}\right)\phi_{i,j-1}-4\phi_{i,j}.$$
(61)

To write this as a matrix equation we number the sites of the $N \times N$ interior lattice 1 to N^2 . The number we assign to the site (i, j) is n = i + Nj. Then we can list the values of $\phi_{i,j}$ and $\tilde{\rho}_{i,j}$, from 1 to N^2 , in column vectors Φ and B respectively. The above equation then turns into the matrix equation $M\Phi = B$, where M is a $N^2 \times N^2$ matrix whose components are given by

$$M_{m,n} = \left(A + \frac{Ca}{2}\right)\delta_{m,n+1} + \left(A - \frac{Ca}{2}\right)\delta_{m,n-1} + \left(B + \frac{Da}{2}\right)\delta_{m,n+N} + \left(B - \frac{Da}{2}\right)\delta_{m,n-N} - 4\delta_{m,n}$$
(62)

and the vector B is given by

$$B_n = \tilde{\rho}_n = \tilde{\rho}_{i,j},\tag{63}$$

where n = i + Nj.

[20 marks]

Equations involving boundary terms, in the set of linear equations $M\Phi = B$, are treated differently since $\phi_{0,j} = \phi_{N+1,j} = \phi_{i,0} = \phi_{i,N+1} = 0$ (zero Dirichlet boundary conditions). This amounts to terms appearing in (62) being set to zero for certain values of *m* (certain row equations). Namely, the following terms in (62) are set to zero, (here i(m) and j(m) are the original indices.)

When
$$i(m) = 1$$
, $\delta_{m,n-1} = 0$. (64)

When
$$i(m) = N$$
, $\delta_{m,n+1} = 0$. (65)

When
$$j(m) = 1$$
, $\delta_{m,n-N} = 0$. (66)

When
$$j(m) = N$$
, $\delta_{m,n+N} = 0$. (67)

In general, to implement Dirichlet boundary conditions, one must subtract the boundary values from $\tilde{\rho}_n$ appropriately to form the vector B. However, since we want to implement zero Dirichlet boundary conditions, this amounts to subtracting zero, leaving the equation (63) unaltered.

[5 marks]

(c) The equation $\mathbf{A} \cdot \mathbf{y} = \mathbf{b}$ can be solved by repeatedly replacing rows of the equation with a linear combination of themselves and another row in the following way.

- (i) First divide the first row by its first element so that the top left element is 1.
- (ii) Subtract the first row from the remaining N-1 rows so that the first element in each is 0.
- (iii) repeat (i) and (ii) on the remaining $(N-1) \times (N-1)$ sub-matrix.
- (iv) Continue until the matrix A is in upper triangular form.
- (v) the vector \mathbf{x} can then be found by back substitution.

[25 marks]

(d) In the first step of Gaussian elimination on an $N \times N$ matrix we must perform N division to $(N-1 \text{ elements of } \mathbf{A} \text{ and the first element of } \mathbf{b})$. Then there are N(N-1) multiplications and N(N-1) subtractions to be made so that the first element of each of the N-1 remaining rows is zero. So there are N+2N(N-1)=N(2N-1) operations in total in the first step. This procedure is then repeated in the second step in the $(N-1) \times (N-1)$ sub-matrix. Hence, the total number of operations is

$$\sum_{n=1}^{N} n(2n-1) \approx N^3.$$
(68)

[25 marks]

Solutions: Question 4

(a) If we let an arbitrary state $\phi(x, y)$ evolve under the equation

$$\frac{\partial \phi}{\partial t} = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} - \rho(x, y), \tag{69}$$

for a long enough time, it will generally converge to a stationary solution Φ . For a stationary solution the left hand side of the above equation is zero and so $\Phi(x, y)$ satisfies

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = \rho(x, y). \tag{70}$$

[15 marks]

(b) If we use a lattice with equal lattice spacings ax = ay = a in both space directions, and a spacing Δt in the time direction, the Forward Time Centred Space discretisation scheme for this equation is the following finite difference equation.

$$\frac{\partial\phi}{\partial t} = \frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} - \rho(x, y),\tag{71}$$

$$\frac{\phi_{i,j}^{n+1} - \phi_{i,j}^n}{\Delta t} = \frac{\phi_{i+1,j}^n - 2\phi_{i,j}^n + \phi_{i-1,j}^n}{a^2} + \frac{\phi_{i,j+1}^n - 2\phi_{i,j}^n + \phi_{i,j-1}^n}{a^2} - \rho_{i,j}$$
(72)

$$\phi_{i,j}^{n+1} = \left(1 - \frac{4\Delta t}{a^2}\right)\phi_{i,j}^n + \frac{\Delta t}{a^2}\left(\phi_{i+1,j}^n + \phi_{i-1,j}^n + \phi_{i,j+1}^n + \phi_{i,j-1}^n\right) - \Delta t\rho_{i,j}$$
(73)

Page 10 of 11

[35 marks]

(c) The von Neumann stability criterion for this scheme is $\Delta t \leq a^2/4$. The Jacobi method for solving the Poisson equation is to use the largest possible time step size $\Delta t = a^2/4$. This amounts to iterating the following equation to evolve an arbitrary initial state ϕ until it converges to a stationary state.

$$\phi_{i,j}^{n+1} = \frac{1}{4} \left(\phi_{i+1,j}^n + \phi_{i-1,j}^n + \phi_{i,j+1}^n + \phi_{i,j-1}^n \right) - \frac{a^2}{4} \rho_{i,j}.$$
(74)

[10 marks]

The above procedure can be modified to obtain the GaussSeidel method by using values of $\phi(n+1)$ that have already been computed to calculate each $\phi_{i,j}^{n+1}$. This amounts to using the following equation

$$\phi_{i,j}^{n+1} = \frac{1}{4} \left(\phi_{i+1,j}^n + \phi_{i-1,j}^{n+1} + \phi_{i,j+1}^n + \phi_{i,j-1}^{n+1} \right) - \frac{a^2}{4} \rho_{i,j}.$$
(75)

[15 marks]

(d) Assuming that each iteration reduces the difference between the estimate and the true solution by a factor ρ_s , the number of iterations *n* required to reduce this difference by a factor 10^{-p} is given by

$$\rho_s^n = 10^{-p},\tag{76}$$

$$\implies n \ln(\rho_s) = -p \ln(10), \tag{77}$$

$$\implies n = \frac{-p\ln(10)}{\ln(\rho_s)}.$$
(78)

[15 marks]

For the Jacobi method we have $\rho_s = \rho_J = \cos(\frac{\pi}{N})$. So the number of iterations of the Jacobi method needed to reduce the difference by a factor of 10^{-p} is

$$n_J = \frac{-p\ln(10)}{\ln(\rho_J)} = \frac{-p\ln(10)}{\ln(\cos(\frac{\pi}{N}))}.$$
(79)

For the GaussSeidel method we have $\rho_s = \rho_{GS} = \cos^2(\frac{\pi}{N})$. So the number of iterations of the GaussSeidel method needed to reduce the difference by a factor of 10^{-p} is

$$n_{GS} = \frac{-p\ln(10)}{\ln(\rho_{GS})} = \frac{-p\ln(10)}{\ln(\cos^2(\frac{\pi}{N}))} = \frac{-p\ln(10)}{2\ln(\cos(\frac{\pi}{N}))} = \frac{n_J}{2}$$
(80)

Hence the GaussSeidel converges twice as fast as the Jacobi method.

[10 marks]

Page 11 of 11