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Exam

1. (a) If X is uniformly distributed between 0 and 1 (p(x) = 1, x ∈ [0, 1]) and f is a
function, How is the random variable Y = f(X) distributed?

[15 marks]

(b) Use the transformation method to construct a recipe for obtaining pseudo-
random numbers in the interval [0,

√
e− 1 ], with probability distribution

p(y) =
2y

y2 + 1
, (1)

given a generator of uniform pseudo-random numbers between 0 and 1

[40 marks]

(c) List the main steps of the rejection method for generating a pseudo-random
number distributed according to f(x), given a constant M ∈ R and genera-
tors for uniform pseudo-random numbers between 0 and 1 and pseudo-random
numbers distributed according to g(x) such that f(x) < Mg(x), for all x ∈ R.
Prove that the rejection method produces a variable Y distributed according
to f(x).

[45 marks]

2. (a) If xi are N independent uniformly distributed random points within a d-
dimensional volume V , and

IMC =
V

N

N∑
i=1

f(xi), (2)

show that the expectation value of IMC is equal to the integral of the function
f over the volume V ,

〈IMC〉 =

∫
V

f(x)dx. (3)

Explain how this relation can be used to compute the integral I using Monte
Carlo integration.

[20 marks]

(b) Show that the variance of IMC is given by

var(IMC) = 〈(IMC − 〈IMC〉)2〉 =
V 2

N
[〈f 2〉 − 〈f〉2] (4)

[40 marks]

(c) Assuming you have a random number generator to generate pseudo-random
numbers x ∈ [0,∞) with distribution p(x) = λ sin2(x) exp(−x) (where λ is a
normalising constant), explain how you would compute the integral

I =

∫ ∞
0

sin(x) sin(2x)e−xdx (5)

using Monte Carlo integration with importance sampling.
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[40 marks]

3. (a) Using symmetric first and second derivatives, write down the discretised version
of the equation

A
∂2φ

∂x2
+B

∂2φ

∂y2
+ C

∂φ

∂x
+D

∂φ

∂y
= ρ(x, y), 0 ≤ x, y ≤ L, (6)

where A,B,C and D are known constants and ρ(x, y) is a known function
of x and y, on a square symmetric grid of N × N points with zero Dirichlet
boundary conditions.

[25 marks]

(b) Explain how the resulting equation can be written as a matrix equation, MΦ =
B, where M is a sparse N2 × N2 matrix and B is a known vector of length
N2. Write down expressions for M and B, taking the boundary conditions into
account.

[25 marks]

(c) Consider the matrix equation

A · x = b, (7)

where A is a known N ×N matrix, b is a known vector of length N , and x is
a vector of N unknowns xi, i = 1, · · · , N . Explain how this equation may be
solved using gaussian elimination.

[25 marks]

(d) Show that the number of floating point operations (multiplication, division,
addition, subtraction) required to obtain the solution this way grows like N3

as N increases.

[25 marks]

4. (a) Consider the 2-dimensional Poisson equation

∂2φ

∂x2
+
∂2φ

∂y2
= ρ(x, y). (8)

Explain how the solution of this equation can be obtained by solving the dif-
fusion equation

∂φ

∂t
=
∂2φ

∂x2
+
∂2φ

∂y2
− ρ(x, y), (9)

with an arbitrary initial condition for φ(x, y).

[15 marks]

(b) Write down the Forward Time Centred Space discretisation scheme for this
equation, assuming equal lattice spacings ax = ay = a in both space directions,
and a spacing ∆t in the time direction.

[35 marks]
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(c) Using the von Neumann stability criterion for this scheme, ∆t ≤ a2/4, derive
the Jacobi method for solving the Poisson equation, and explain how it may
be modified to obtain the Gauss-Seidel method.

[25 marks]

(d) Assuming that each iteration reduces the difference between your estimate and
the true solution by a factor ρs (called the spectral radius), find how many
iterations are required to reduce this difference by a factor 10−p.

For the Poisson equation on a square N × N grid with homogeneous Dirich-
let boundary conditions, the spectral radii for the Jacobi and Gauss-Seidel
methods are given by

Jacobi: ρJ = cos
( π
N

)
, Gauss-Seidel: ρGS = cos2

( π
N

)
. (10)

Use this to show that the Gauss-Seidel method converges twice as fast as the
Jacobi method, and that the number of iterations required for both to converge
increases as N2 in the limit of large N.

[25 marks]

Solutions: Question 1

(a) If X is uniformly distributed between 0 and 1, f is a function and we define the
random variable Y = f(X), we must have

Probability X ∈ [a, b] = Probability Y ∈ [f(a), f(b)], (11)

=⇒
∫ b

a

PX(x)dx =

∫ f(b)

f(a)

PY (y)dy, (12)

=

∫ b

a

PY (f(x))|f ′(x)|dx. (13)

As this must be true for every interval [a, b] ⊂ [0, 1], we have

PY (y) = PY (f(x)) =
PX(x)

|f ′(x)|
=

1

|f ′(x)|
. (14)

[15 marks]

(b) We want to find a function f such that, given X is uniformly distributed between
0 and 1, Y = f(X) is distributed according to

p(y) =
2y

y2 + 1
, (15)

We know that
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Probability X ∈ [a, b] = Probability Y ∈ [f(a), f(b)], (16)

=⇒
∫ b

a

PX(x)dx =

∫ f(b)

f(a)

PY (y)dy, (17)

=⇒
∫ x

0

dx′ =

∫ y

0

2y′

y′2 + 1
dy′, (18)

=⇒ x =

∫ y2+1

1

dα

α
, (19)

= [ln(α)]y
2+1

1 = ln(y2 + 1) (20)

Inverting this gives

y =
√
ex − 1. (21)

[20 marks]

Hence, generating a uniformly distributed number X between 0 and 1 and applying
the function f(x) =

√
ex − 1 produces a number Y which is distributed according

to (15).

[20 marks]

(c) Given a constant M ∈ R, the following three steps will produce a random number
Y distributed according to f(x) given generators for producing random numbers u
distributed uniformly between 0 and 1 and X distributed according to g(x).

(i) Generate a random number X according to f(x).

(ii) Generate a uniformly distributed random number u between 0 and 1.

(iii) If u < f(X)/Mg(X), accept Y = X. Other wise reject X and execute these
three steps again.

[20 marks]

To prove Y is distributed according to f(x), we first show that the probability of Y
being less than x is given by

P (Y < x) =

∫ x

−∞
f(x̃)dx̃. (22)

We note, for Y to be less than x, two things must be true. Firstly, the random
number u must be less than f(X)/Mg(X). Then, provided that’s true, X must be
less than x. Hence, we have

P (Y < x) = P (X < x|u < f(X)/Mg(X)), (23)

=
P (X < x, u < f(X)/Mg(X))

P (u < f(X)/Mg(X))
. (24)
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We now note, that since X and u are independent random variables, the tuple (X, u)
is distributed in the plane according to the product of distributions for X and u.

(X, u) ∼ P (x, y) = g(x)P
[0,1]

uni(y). (25)

Rewriting the probabilities appearing in (24) as integrals of the above distribution
yields

P (Y < x) =

∫ x
−∞

(∫ f(x̃)/Mg(x̃)

0
g(x̃)dy

)
dx̃∫ +∞

−∞

(∫ f(x̃)/Mg(x̃)

0
g(x̃)dy

)
dx̃

(26)

=

∫ x
−∞ [f(x̃)/Mg(x̃)] g(x̃)dx̃∫ +∞
−∞ [f(x̃)/Mg(x̃)] g(x̃)dx̃

(27)

=

∫ x
−∞ f(x̃)dx̃∫ +∞
−∞ f(x̃)dx̃

(28)

=

∫ x

−∞
f(x̃)dx̃ (29)

The probability density of Y is given by the derivative of its cumulative distribution.
So the distribution of Y must be

PY (y) =
d

dx

(∫ x

−∞
f(x̃)dx̃

) ∣∣∣
x=y

= f(y), (30)

proving that Y is distributed according to f(x).

[25 marks]

Solutions: Question 2

(a) If X is uniformly distributed inside the d-dimensional volume V , then the expecta-
tion value of the quantity f(X) is

〈f〉 =

∫
V

f(x)P V
uni(x)dx =

∫
V

f(x)

V
dx. (31)

Hence the expectation value of IMC is

〈IMC〉 =
V

N

N∑
i=1

〈f〉 =
V

N
(N〈f〉) , (32)

= V

∫
V

f(x)

V
dx =

∫
V

f(x)dx. (33)

For the first equality we used the fact that the xis are independent. Hence the
expectation value of IMC is the integral of f over the region V .
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[20 marks]

(b)

var(IMC) = 〈(IMC − 〈IMC〉)2〉, (34)

= 〈(IMC)2〉 − 〈IMC〉2, (35)

=

〈(
V

N

N∑
i=1

f(xi)

)2〉
−

〈
V

N

N∑
i=1

f(xi)

〉2

, (36)

=
V 2

N2

〈( N∑
i=1

f(xi)

)2〉
−

〈
N∑
i=1

f(xi)

〉2
 , (37)

=
V 2

N2


〈

N∑
i=1

f(xi)
2 +

N∑
i,j=1
i 6=j

f(xi)f(xj)

〉
− (N〈f〉)2

 , (38)

=
V 2

N2

N〈f 2〉+
N∑

i,j=1
i 6=j

〈f〉〈f〉 −N2〈f〉2

 , (39)

=
V 2

N2

[
N〈f 2〉+

N(N − 1)

N
〈f〉2 −N2〈f〉2

]
, (40)

=
V 2

N

[
〈f 2〉 − 〈f〉2

]
. (41)

[40 marks]

(c) Multiplying and dividing the integrand by p(x) yields

I =

∫ ∞
0

sin(x) sin(2x)e−xdx (42)

=

∫ ∞
0

sin(x) sin(2x)e−x
p(x)

p(x)
dx (43)

=

∫ ∞
0

sin(x) sin(2x)e−x

λ sin2(x)e−x
p(x)dx (44)

=

∫ ∞
0

2 sin2(x) cos(x)

λ sin2(x)
p(x)dx (45)

=

∫ ∞
0

2 cos(x)

λ
p(x)dx (46)

[25 marks]

Hence, to compute I using Monte Carlo integration with importance sampling one
can generate N pseudo-random numbers xi distributed under p(x) and compute

I =
N∑
i=1

2 cos(xi)

λ
(47)

[15 marks]
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Solutions: Question 3

(a) The symmetric finite difference equation for the first derivative of a function f is

f ′(x)→ f(x+ a)− f(x− a)

2a
. (48)

The symmetric finite difference equation for the second derivative of a function f is

f ′′(x)→ f(x+ a)− 2f(x) + f(x− a)

a2
. (49)

We discretise the defined square region of the x, y-plane into a symmetric (N + 2)×
(N + 2) grid, with lattice spacing a = L

N+1
. For a function φ(x, y) on the interior

points of the lattice we write

φ(x, y) = φ(ia, ja) = φi,j, (50)

where i, j = 1 · · ·N . The first and second derivatives, at interior points of the
lattice, are then given by

∂φ

∂x
(x, y)→ φi+1,j − φi−1,j

2a
, (51)

∂φ

∂x
(x, y)→ φi,j+1 − φi,j−1

2a
, (52)

∂2φ

∂x2
(x, y)→ φi+1,j − 2φi,j + φi−1,j

a2
, (53)

∂2φ

∂y2
(x, y)→ φi,j+1 − 2φi,j + φi,j−1

a2
. (54)

[10 marks]

Substituting these into the differential equation yields

ρ(x, y) = A
∂2φ

∂x2
+B

∂2φ

∂y2
+ C

∂φ

∂x
+D

∂φ

∂y
, (55)

→ A
φi+1,j − 2φi,j + φi−1,j

a2
+B

φi,j+1 − 2φi,j + φi,j−1
a2

(56)

+ C
φi+1,j − φi−1,j

2a
+D

φi,j+1 − φi,j−1
2a

, (57)

=
1

a2

[(
A+

Ca

2

)
φi+1,j +

(
A− Ca

2

)
φi−1,j (58)

+

(
B +

Da

2

)
φi,j+1 +

(
B − Da

2

)
φi,j−1 − 4φi,j

]
(59)

[15 marks]
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(b) We first define ρ̃i,j = a2ρ(x, y) so we can write

ρ̃i,j =

(
A+

Ca

2

)
φi+1,j +

(
A− Ca

2

)
φi−1,j (60)

+

(
B +

Da

2

)
φi,j+1 +

(
B − Da

2

)
φi,j−1 − 4φi,j. (61)

To write this as a matrix equation we number the sites of the N ×N interior lattice
1 to N2. The number we assign to the site (i, j) is n = i + Nj. Then we can list
the values of φi,j and ρ̃i,j, from 1 to N2, in column vectors Φ and B respectively.
The above equation then turns into the matrix equation MΦ = B, where M is a
N2 ×N2 matrix whose components are given by

Mm,n =

(
A+

Ca

2

)
δm,n+1 +

(
A− Ca

2

)
δm,n−1

+

(
B +

Da

2

)
δm,n+N +

(
B − Da

2

)
δm,n−N − 4δm,n

(62)

and the vector B is given by

Bn = ρ̃n = ρ̃i,j, (63)

where n = i+Nj.

[20 marks]

Equations involving boundary terms, in the set of linear equations MΦ = B, are
treated differently since φ0,j = φN+1,j = φi,0 = φi,N+1 = 0 (zero Dirichlet boundary
conditions). This amounts to terms appearing in (62) being set to zero for certain
values of m (certain row equations). Namely, the following terms in (62) are set to
zero, (here i(m) and j(m) are the original indices.)

When i(m) = 1, δm,n−1 = 0. (64)

When i(m) = N, δm,n+1 = 0. (65)

When j(m) = 1, δm,n−N = 0. (66)

When j(m) = N, δm,n+N = 0. (67)

In general, to implement Dirichlet boundary conditions, one must subtract the
boundary values from ρ̃n appropriately to form the vector B. However, since we
want to implement zero Dirichlet boundary conditions, this amounts to subtracting
zero, leaving the equation (63) unaltered.

[5 marks]

(c) The equation A · y = b can be solved by repeatedly replacing rows of the equation
with a linear combination of themselves and another row in the following way.
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(i) First divide the first row by its first element so that the top left element is 1.

(ii) Subtract the first row from the remaining N − 1 rows so that the first element
in each is 0.

(iii) repeat (i) and (ii) on the remaining (N − 1)× (N − 1) sub-matrix.

(iv) Continue until the matrix A is in upper triangular form.

(v) the vector x can then be found by back substitution.

[25 marks]

(d) In the first step of Gaussian elimination on an N × N matrix we must perform N
division to (N−1 elements of A and the first element of b). Then there are N(N−1)
multiplications and N(N − 1) subtractions to be made so that the first element of
each of the N −1 remaining rows is zero. So there are N + 2N(N −1) = N(2N −1)
operations in total in the first step. This procedure is then repeated in the second
step in the (N − 1)× (N − 1) sub-matrix. Hence, the total number of operations is

N∑
n=1

n(2n− 1) ≈ N3. (68)

[25 marks]

Solutions: Question 4

(a) If we let an arbitrary state φ(x, y) evolve under the equation

∂φ

∂t
=
∂2φ

∂x2
+
∂2φ

∂y2
− ρ(x, y), (69)

for a long enough time, it will generally converge to a stationary solution Φ. For a
stationary solution the left hand side of the above equation is zero and so Φ(x, y)
satisfies

∂2Φ

∂x2
+
∂2Φ

∂y2
= ρ(x, y). (70)

[15 marks]

(b) If we use a lattice with equal lattice spacings ax = ay = a in both space direc-
tions, and a spacing ∆t in the time direction, the Forward Time Centred Space
discretisation scheme for this equation is the following finite difference equation.

∂φ

∂t
=
∂2φ

∂x2
+
∂2φ

∂y2
− ρ(x, y), (71)

φn+1
i,j − φni,j

∆t
=
φni+1,j − 2φni,j + φni−1,j

a2
+
φni,j+1 − 2φni,j + φni,j−1

a2
− ρi,j (72)

φn+1
i,j =

(
1− 4∆t

a2

)
φni,j +

∆t

a2
(
φni+1,j + φni−1,j + φni,j+1 + φni,j−1

)
−∆tρi,j

(73)
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[35 marks]

(c) The von Neumann stability criterion for this scheme is ∆t ≤ a2/4. The Jacobi
method for solving the Poisson equation is to use the largest possible time step size
∆t = a2/4. This amounts to iterating the following equation to evolve an arbitrary
initial state φ until it converges to a stationary state.

φn+1
i,j =

1

4

(
φni+1,j + φni−1,j + φni,j+1 + φni,j−1

)
− a2

4
ρi,j. (74)

[10 marks]

The above procedure can be modified to obtain the GaussSeidel method by using
values of φ(n + 1) that have already been computed to calculate each φn+1

i,j . This
amounts to using the following equation

φn+1
i,j =

1

4

(
φni+1,j + φn+1

i−1,j + φni,j+1 + φn+1
i,j−1

)
− a2

4
ρi,j. (75)

[15 marks]

(d) Assuming that each iteration reduces the difference between the estimate and the
true solution by a factor ρs, the number of iterations n required to reduce this
difference by a factor 10−p is given by

ρns = 10−p, (76)

=⇒ n ln(ρs) = −p ln(10), (77)

=⇒ n =
−p ln(10)

ln(ρs)
. (78)

[15 marks]

For the Jacobi method we have ρs = ρJ = cos( π
N

). So the number of iterations of
the Jacobi method needed to reduce the difference by a factor of 10−p is

nJ =
−p ln(10)

ln(ρJ)
=
−p ln(10)

ln(cos( π
N

))
. (79)

For the GaussSeidel method we have ρs = ρGS = cos2( π
N

). So the number of
iterations of the GaussSeidel method needed to reduce the difference by a factor of
10−p is

nGS =
−p ln(10)

ln(ρGS)
=
−p ln(10)

ln(cos2( π
N

))
=
−p ln(10)

2 ln(cos( π
N

))
=
nJ
2

(80)

Hence the GaussSeidel converges twice as fast as the Jacobi method.

[10 marks]
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