# OLLSCOIL NA hÉIREANN MÁ NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH 

## THEORETICAL PHYSICS

Fourth Year

## SEMESTER 1

2017-2018

Computational Physics II<br>MP468<br>Solutions

## Exam

1. (a) If $X$ is uniformly distributed between 0 and $1(p(x)=1, x \in[0,1])$ and $f$ is a function, How is the random variable $Y=f(X)$ distributed?
[15 marks]
(b) Use the transformation method to construct a recipe for obtaining pseudorandom numbers in the interval $[0, \sqrt{e-1}]$, with probability distribution

$$
\begin{equation*}
p(y)=\frac{2 y}{y^{2}+1}, \tag{1}
\end{equation*}
$$

given a generator of uniform pseudo-random numbers between 0 and 1
[40 marks]
(c) List the main steps of the rejection method for generating a pseudo-random number distributed according to $f(x)$, given a constant $M \in \mathbb{R}$ and generators for uniform pseudo-random numbers between 0 and 1 and pseudo-random numbers distributed according to $g(x)$ such that $f(x)<M g(x)$, for all $x \in \mathbb{R}$. Prove that the rejection method produces a variable $Y$ distributed according to $f(x)$.
[45 marks]
2. (a) If $x_{i}$ are $N$ independent uniformly distributed random points within a ddimensional volume $V$, and

$$
\begin{equation*}
I_{\mathrm{MC}}=\frac{V}{N} \sum_{i=1}^{N} f\left(x_{i}\right) \tag{2}
\end{equation*}
$$

show that the expectation value of $I_{M C}$ is equal to the integral of the function $f$ over the volume $V$,

$$
\begin{equation*}
\left\langle I_{\mathrm{MC}}\right\rangle=\int_{V} f(x) d x \tag{3}
\end{equation*}
$$

Explain how this relation can be used to compute the integral I using Monte Carlo integration.
[20 marks]
(b) Show that the variance of $I_{\mathrm{MC}}$ is given by

$$
\begin{equation*}
\operatorname{var}\left(I_{\mathrm{MC}}\right)=\left\langle\left(I_{\mathrm{MC}}-\left\langle I_{\mathrm{MC}}\right\rangle\right)^{2}\right\rangle=\frac{V^{2}}{N}\left[\left\langle f^{2}\right\rangle-\langle f\rangle^{2}\right] \tag{4}
\end{equation*}
$$

[40 marks]
(c) Assuming you have a random number generator to generate pseudo-random numbers $x \in[0, \infty)$ with distribution $p(x)=\lambda \sin ^{2}(x) \exp (-x)$ (where $\lambda$ is a normalising constant), explain how you would compute the integral

$$
\begin{equation*}
I=\int_{0}^{\infty} \sin (x) \sin (2 x) e^{-x} d x \tag{5}
\end{equation*}
$$

using Monte Carlo integration with importance sampling.
3. (a) Using symmetric first and second derivatives, write down the discretised version of the equation

$$
\begin{equation*}
A \frac{\partial^{2} \phi}{\partial x^{2}}+B \frac{\partial^{2} \phi}{\partial y^{2}}+C \frac{\partial \phi}{\partial x}+D \frac{\partial \phi}{\partial y}=\rho(x, y), \quad 0 \leq x, y \leq L \tag{6}
\end{equation*}
$$

where $A, B, C$ and $D$ are known constants and $\rho(x, y)$ is a known function of $x$ and $y$, on a square symmetric grid of $N \times N$ points with zero Dirichlet boundary conditions.
[25 marks]
(b) Explain how the resulting equation can be written as a matrix equation, $M \Phi=$ $B$, where $M$ is a sparse $N^{2} \times N^{2}$ matrix and $B$ is a known vector of length $N^{2}$. Write down expressions for $M$ and $B$, taking the boundary conditions into account.
[25 marks]
(c) Consider the matrix equation

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{x}=\mathbf{b} \tag{7}
\end{equation*}
$$

where $\mathbf{A}$ is a known $N \times N$ matrix, $\mathbf{b}$ is a known vector of length $N$, and $\mathbf{x}$ is a vector of $N$ unknowns $x_{i}, i=1, \cdots, N$. Explain how this equation may be solved using gaussian elimination.
[25 marks]
(d) Show that the number of floating point operations (multiplication, division, addition, subtraction) required to obtain the solution this way grows like $N^{3}$ as $N$ increases.
[25 marks]
4. (a) Consider the 2-dimensional Poisson equation

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=\rho(x, y) . \tag{8}
\end{equation*}
$$

Explain how the solution of this equation can be obtained by solving the diffusion equation

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}-\rho(x, y) \tag{9}
\end{equation*}
$$

with an arbitrary initial condition for $\phi(x, y)$.
[15 marks]
(b) Write down the Forward Time Centred Space discretisation scheme for this equation, assuming equal lattice spacings $a x=a y=a$ in both space directions, and a spacing $\Delta t$ in the time direction.
[35 marks]
(c) Using the von Neumann stability criterion for this scheme, $\Delta t \leq a^{2} / 4$, derive the Jacobi method for solving the Poisson equation, and explain how it may be modified to obtain the Gauss-Seidel method.
[25 marks]
(d) Assuming that each iteration reduces the difference between your estimate and the true solution by a factor $\rho_{s}$ (called the spectral radius), find how many iterations are required to reduce this difference by a factor $10^{-p}$.
For the Poisson equation on a square $N \times N$ grid with homogeneous Dirichlet boundary conditions, the spectral radii for the Jacobi and Gauss-Seidel methods are given by

$$
\begin{equation*}
\text { Jacobi: } \rho_{J}=\cos \left(\frac{\pi}{N}\right), \quad \text { Gauss-Seidel: } \rho_{G S}=\cos ^{2}\left(\frac{\pi}{N}\right) . \tag{10}
\end{equation*}
$$

Use this to show that the Gauss-Seidel method converges twice as fast as the Jacobi method, and that the number of iterations required for both to converge increases as $N^{2}$ in the limit of large N .
[25 marks]

## Solutions: Question 1

(a) If $X$ is uniformly distributed between 0 and $1, f$ is a function and we define the random variable $Y=f(X)$, we must have

$$
\begin{align*}
\text { Probability } X \in[a, b] & =\text { Probability } Y \in[f(a), f(b)],  \tag{11}\\
\Longrightarrow \int_{a}^{b} P_{X}(x) d x & =\int_{f(a)}^{f(b)} P_{Y}(y) d y  \tag{12}\\
& =\int_{a}^{b} P_{Y}(f(x))\left|f^{\prime}(x)\right| d x \tag{13}
\end{align*}
$$

As this must be true for every interval $[a, b] \subset[0,1]$, we have

$$
\begin{equation*}
P_{Y}(y)=P_{Y}(f(x))=\frac{P_{X}(x)}{\left|f^{\prime}(x)\right|}=\frac{1}{\left|f^{\prime}(x)\right|} \tag{14}
\end{equation*}
$$

## [15 marks]

(b) We want to find a function $f$ such that, given $X$ is uniformly distributed between 0 and $1, Y=f(X)$ is distributed according to

$$
\begin{equation*}
p(y)=\frac{2 y}{y^{2}+1}, \tag{15}
\end{equation*}
$$

We know that

$$
\begin{align*}
& \text { Probability } X \in[a, b]=\text { Probability } Y \in[f(a), f(b)] \text {, }  \tag{16}\\
& \Longrightarrow \int_{a}^{b} P_{X}(x) d x=\int_{f(a)}^{f(b)} P_{Y}(y) d y,  \tag{17}\\
& \Longrightarrow \int_{0}^{x} d x^{\prime}=\int_{0}^{y} \frac{2 y^{\prime}}{y^{\prime 2}+1} d y^{\prime} \text {, }  \tag{18}\\
& \Longrightarrow x=\int_{1}^{y^{2}+1} \frac{d \alpha}{\alpha} \text {, }  \tag{19}\\
& =[\ln (\alpha)]_{1}^{y^{2}+1}=\ln \left(y^{2}+1\right) \tag{20}
\end{align*}
$$

Inverting this gives

$$
\begin{equation*}
y=\sqrt{e^{x}-1} \tag{21}
\end{equation*}
$$

## [20 marks]

Hence, generating a uniformly distributed number $X$ between 0 and 1 and applying the function $f(x)=\sqrt{e^{x}-1}$ produces a number $Y$ which is distributed according to (15).

## [20 marks]

(c) Given a constant $M \in \mathbb{R}$, the following three steps will produce a random number $Y$ distributed according to $f(x)$ given generators for producing random numbers $u$ distributed uniformly between 0 and 1 and $X$ distributed according to $g(x)$.
(i) Generate a random number $X$ according to $f(x)$.
(ii) Generate a uniformly distributed random number $u$ between 0 and 1 .
(iii) If $u<f(X) / M g(X)$, accept $Y=X$. Other wise reject $X$ and execute these three steps again.

## [20 marks]

To prove $Y$ is distributed according to $f(x)$, we first show that the probability of $Y$ being less than $x$ is given by

$$
\begin{equation*}
P(Y<x)=\int_{-\infty}^{x} f(\tilde{x}) d \tilde{x} \tag{22}
\end{equation*}
$$

We note, for $Y$ to be less than $x$, two things must be true. Firstly, the random number $u$ must be less than $f(X) / M g(X)$. Then, provided that's true, $X$ must be less than $x$. Hence, we have

$$
\begin{align*}
P(Y<x) & =P(X<x \mid u<f(X) / M g(X)),  \tag{23}\\
& =\frac{P(X<x, u<f(X) / M g(X))}{P(u<f(X) / M g(X))} . \tag{24}
\end{align*}
$$

We now note, that since $X$ and $u$ are independent random variables, the tuple ( $X, u$ ) is distributed in the plane according to the product of distributions for $X$ and $u$.

$$
\begin{equation*}
(X, u) \sim P(x, y)=g(x) P_{\mathrm{uni}}^{[0,1]}(y) . \tag{25}
\end{equation*}
$$

Rewriting the probabilities appearing in (24) as integrals of the above distribution yields

$$
\begin{align*}
P(Y<x) & =\frac{\int_{-\infty}^{x}\left(\int_{0}^{f(\tilde{x}) / M g(\tilde{x})} g(\tilde{x}) d y\right) d \tilde{x}}{\int_{-\infty}^{+\infty}\left(\int_{0}^{f(\tilde{x}) / M g(\tilde{x})} g(\tilde{x}) d y\right) d \tilde{x}}  \tag{26}\\
& =\frac{\int_{-\infty}^{x}[f(\tilde{x}) / M g(\tilde{x})] g(\tilde{x}) d \tilde{x}}{\int_{-\infty}^{+\infty}[f(\tilde{x}) / M g(\tilde{x})] g(\tilde{x}) d \tilde{x}}  \tag{27}\\
& =\frac{\int_{-\infty}^{x} f(\tilde{x}) d \tilde{x}}{\int_{-\infty}^{+\infty} f(\tilde{x}) d \tilde{x}}  \tag{28}\\
& =\int_{-\infty}^{x} f(\tilde{x}) d \tilde{x} \tag{29}
\end{align*}
$$

The probability density of $Y$ is given by the derivative of its cumulative distribution. So the distribution of $Y$ must be

$$
\begin{equation*}
P_{Y}(y)=\left.\frac{d}{d x}\left(\int_{-\infty}^{x} f(\tilde{x}) d \tilde{x}\right)\right|_{x=y}=f(y), \tag{30}
\end{equation*}
$$

proving that $Y$ is distributed according to $f(x)$.

## [25 marks]

## Solutions: Question 2

(a) If $X$ is uniformly distributed inside the $d$-dimensional volume $V$, then the expectation value of the quantity $f(X)$ is

$$
\begin{equation*}
\langle f\rangle=\int_{V} f(x) P_{\mathrm{uni}}^{V}(x) d x=\int_{V} \frac{f(x)}{V} d x \tag{31}
\end{equation*}
$$

Hence the expectation value of $I_{\mathrm{MC}}$ is

$$
\begin{align*}
\left\langle I_{\mathrm{MC}}\right\rangle & =\frac{V}{N} \sum_{i=1}^{N}\langle f\rangle=\frac{V}{N}(N\langle f\rangle),  \tag{32}\\
& =V \int_{V} \frac{f(x)}{V} d x=\int_{V} f(x) d x . \tag{33}
\end{align*}
$$

For the first equality we used the fact that the $x_{i} \mathrm{~s}$ are independent. Hence the expectation value of $I_{\mathrm{MC}}$ is the integral of $f$ over the region $V$.
(b)

$$
\begin{align*}
\operatorname{var}\left(I_{\mathrm{MC}}\right) & =\left\langle\left(I_{\mathrm{MC}}-\left\langle I_{\mathrm{MC}}\right\rangle\right)^{2}\right\rangle,  \tag{34}\\
& =\left\langle\left(I_{\mathrm{MC}}\right)^{2}\right\rangle-\left\langle I_{\mathrm{MC}}\right\rangle^{2},  \tag{35}\\
& =\left\langle\left(\frac{V}{N} \sum_{i=1}^{N} f\left(x_{i}\right)\right)^{2}\right\rangle-\left\langle\frac{V}{N} \sum_{i=1}^{N} f\left(x_{i}\right)\right\rangle^{2},  \tag{36}\\
& =\frac{V^{2}}{N^{2}}\left[\left\langle\left(\sum_{i=1}^{N} f\left(x_{i}\right)\right)^{2}\right\rangle-\left\langle\sum_{i=1}^{N} f\left(x_{i}\right)\right\rangle^{2}\right],  \tag{37}\\
& =\frac{V^{2}}{N^{2}}\left[\left\langle\sum_{i=1}^{N} f\left(x_{i}\right)^{2}+\sum_{\substack{i, j=1 \\
i \neq j}}^{N} f\left(x_{i}\right) f\left(x_{j}\right)\right\rangle-(N\langle f\rangle)^{2}\right],  \tag{38}\\
& =\frac{V^{2}}{N^{2}}\left[N\left\langle f^{2}\right\rangle+\sum_{\substack{i, j=1 \\
i \neq j}}^{N}\langle f\rangle\langle f\rangle-N^{2}\langle f\rangle^{2}\right],  \tag{39}\\
& =\frac{V^{2}}{N^{2}}\left[N\left\langle f^{2}\right\rangle+\frac{N(N-1)}{N}\langle f\rangle^{2}-N^{2}\langle f\rangle^{2}\right],  \tag{40}\\
& =\frac{V^{2}}{N}\left[\left\langle f^{2}\right\rangle-\langle f\rangle^{2}\right] . \tag{41}
\end{align*}
$$

## [40 marks]

(c) Multiplying and dividing the integrand by $p(x)$ yields

$$
\begin{align*}
I & =\int_{0}^{\infty} \sin (x) \sin (2 x) e^{-x} d x  \tag{42}\\
& =\int_{0}^{\infty} \sin (x) \sin (2 x) e^{-x} \frac{p(x)}{p(x)} d x  \tag{43}\\
& =\int_{0}^{\infty} \frac{\sin (x) \sin (2 x) e^{-x}}{\lambda \sin ^{2}(x) e^{-x}} p(x) d x  \tag{44}\\
& =\int_{0}^{\infty} \frac{2 \sin ^{2}(x) \cos (x)}{\lambda \sin ^{2}(x)} p(x) d x  \tag{45}\\
& =\int_{0}^{\infty} \frac{2 \cos (x)}{\lambda} p(x) d x \tag{46}
\end{align*}
$$

## [25 marks]

Hence, to compute $I$ using Monte Carlo integration with importance sampling one can generate $N$ pseudo-random numbers $x_{i}$ distributed under $p(x)$ and compute

$$
\begin{equation*}
I=\sum_{i=1}^{N} \frac{2 \cos \left(x_{i}\right)}{\lambda} \tag{47}
\end{equation*}
$$

[15 marks]

## Solutions: Question 3

(a) The symmetric finite difference equation for the first derivative of a function $f$ is

$$
\begin{equation*}
f^{\prime}(x) \rightarrow \frac{f(x+a)-f(x-a)}{2 a} . \tag{48}
\end{equation*}
$$

The symmetric finite difference equation for the second derivative of a function $f$ is

$$
\begin{equation*}
f^{\prime \prime}(x) \rightarrow \frac{f(x+a)-2 f(x)+f(x-a)}{a^{2}} . \tag{49}
\end{equation*}
$$

We discretise the defined square region of the $x, y$-plane into a symmetric $(N+2) \times$ $(N+2)$ grid, with lattice spacing $a=\frac{L}{N+1}$. For a function $\phi(x, y)$ on the interior points of the lattice we write

$$
\begin{equation*}
\phi(x, y)=\phi(i a, j a)=\phi_{i, j}, \tag{50}
\end{equation*}
$$

where $i, j=1 \cdots N$. The first and second derivatives, at interior points of the lattice, are then given by

$$
\begin{align*}
\frac{\partial \phi}{\partial x}(x, y) & \rightarrow \frac{\phi_{i+1, j}-\phi_{i-1, j}}{2 a}  \tag{51}\\
\frac{\partial \phi}{\partial x}(x, y) & \rightarrow \frac{\phi_{i, j+1}-\phi_{i, j-1}}{2 a}  \tag{52}\\
\frac{\partial^{2} \phi}{\partial x^{2}}(x, y) & \rightarrow \frac{\phi_{i+1, j}-2 \phi_{i, j}+\phi_{i-1, j}}{a^{2}},  \tag{53}\\
\frac{\partial^{2} \phi}{\partial y^{2}}(x, y) & \rightarrow \frac{\phi_{i, j+1}-2 \phi_{i, j}+\phi_{i, j-1}}{a^{2}} \tag{54}
\end{align*}
$$

## [10 marks]

Substituting these into the differential equation yields

$$
\begin{align*}
\rho(x, y) & =A \frac{\partial^{2} \phi}{\partial x^{2}}+B \frac{\partial^{2} \phi}{\partial y^{2}}+C \frac{\partial \phi}{\partial x}+D \frac{\partial \phi}{\partial y},  \tag{55}\\
& \rightarrow A \frac{\phi_{i+1, j}-2 \phi_{i, j}+\phi_{i-1, j}}{a^{2}}+B \frac{\phi_{i, j+1}-2 \phi_{i, j}+\phi_{i, j-1}}{a^{2}}  \tag{56}\\
& +C \frac{\phi_{i+1, j}-\phi_{i-1, j}}{2 a}+D \frac{\phi_{i, j+1}-\phi_{i, j-1}}{2 a},  \tag{57}\\
& =\frac{1}{a^{2}}\left[\left(A+\frac{C a}{2}\right) \phi_{i+1, j}+\left(A-\frac{C a}{2}\right) \phi_{i-1, j}\right.  \tag{58}\\
& \left.+\left(B+\frac{D a}{2}\right) \phi_{i, j+1}+\left(B-\frac{D a}{2}\right) \phi_{i, j-1}-4 \phi_{i, j}\right] \tag{59}
\end{align*}
$$

[15 marks]
(b) We first define $\tilde{\rho}_{i, j}=a^{2} \rho(x, y)$ so we can write

$$
\begin{align*}
\tilde{\rho}_{i, j} & =\left(A+\frac{C a}{2}\right) \phi_{i+1, j}+\left(A-\frac{C a}{2}\right) \phi_{i-1, j}  \tag{60}\\
& +\left(B+\frac{D a}{2}\right) \phi_{i, j+1}+\left(B-\frac{D a}{2}\right) \phi_{i, j-1}-4 \phi_{i, j} . \tag{61}
\end{align*}
$$

To write this as a matrix equation we number the sites of the $N \times N$ interior lattice 1 to $N^{2}$. The number we assign to the site $(i, j)$ is $n=i+N j$. Then we can list the values of $\phi_{i, j}$ and $\tilde{\rho}_{i, j}$, from 1 to $N^{2}$, in column vectors $\Phi$ and $B$ respectively. The above equation then turns into the matrix equation $M \Phi=B$, where $M$ is a $N^{2} \times N^{2}$ matrix whose components are given by

$$
\begin{align*}
M_{m, n} & =\left(A+\frac{C a}{2}\right) \delta_{m, n+1}+\left(A-\frac{C a}{2}\right) \delta_{m, n-1} \\
& +\left(B+\frac{D a}{2}\right) \delta_{m, n+N}+\left(B-\frac{D a}{2}\right) \delta_{m, n-N}-4 \delta_{m, n} \tag{62}
\end{align*}
$$

and the vector $B$ is given by

$$
\begin{equation*}
B_{n}=\tilde{\rho}_{n}=\tilde{\rho}_{i, j} \tag{63}
\end{equation*}
$$

where $n=i+N j$.

## [20 marks]

Equations involving boundary terms, in the set of linear equations $M \Phi=B$, are treated differently since $\phi_{0, j}=\phi_{N+1, j}=\phi_{i, 0}=\phi_{i, N+1}=0$ (zero Dirichlet boundary conditions). This amounts to terms appearing in (62) being set to zero for certain values of $m$ (certain row equations). Namely, the following terms in (62) are set to zero, (here $i(m)$ and $j(m)$ are the original indices.)

$$
\begin{align*}
\text { When } i(m)=1, & \delta_{m, n-1}=0 .  \tag{64}\\
\text { When } i(m)=N, & \delta_{m, n+1}=0 .  \tag{65}\\
\text { When } j(m)=1, & \delta_{m, n-N}=0 .  \tag{66}\\
\text { When } j(m)=N, & \delta_{m, n+N}=0 . \tag{67}
\end{align*}
$$

In general, to implement Dirichlet boundary conditions, one must subtract the boundary values from $\tilde{\rho}_{n}$ appropriately to form the vector $B$. However, since we want to implement zero Dirichlet boundary conditions, this amounts to subtracting zero, leaving the equation (63) unaltered.

## [5 marks]

(c) The equation $\mathbf{A} \cdot \mathbf{y}=\mathbf{b}$ can be solved by repeatedly replacing rows of the equation with a linear combination of themselves and another row in the following way.
(i) First divide the first row by its first element so that the top left element is 1 .
(ii) Subtract the first row from the remaining $N-1$ rows so that the first element in each is 0 .
(iii) repeat (i) and (ii) on the remaining $(N-1) \times(N-1)$ sub-matrix.
(iv) Continue until the matrix $\mathbf{A}$ is in upper triangular form.
(v) the vector $\mathbf{x}$ can then be found by back substitution.

## [25 marks]

(d) In the first step of Gaussian elimination on an $N \times N$ matrix we must perform $N$ division to ( $N-1$ elements of $\mathbf{A}$ and the first element of $\mathbf{b}$ ). Then there are $N(N-1)$ multiplications and $N(N-1)$ subtractions to be made so that the first element of each of the $N-1$ remaining rows is zero. So there are $N+2 N(N-1)=N(2 N-1)$ operations in total in the first step. This procedure is then repeated in the second step in the $(N-1) \times(N-1)$ sub-matrix. Hence, the total number of operations is

$$
\begin{equation*}
\sum_{n=1}^{N} n(2 n-1) \approx N^{3} \tag{68}
\end{equation*}
$$

## [25 marks]

## Solutions: Question 4

(a) If we let an arbitrary state $\phi(x, y)$ evolve under the equation

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}-\rho(x, y) \tag{69}
\end{equation*}
$$

for a long enough time, it will generally converge to a stationary solution $\Phi$. For a stationary solution the left hand side of the above equation is zero and so $\Phi(x, y)$ satisfies

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}=\rho(x, y) \tag{70}
\end{equation*}
$$

## [15 marks]

(b) If we use a lattice with equal lattice spacings $a x=a y=a$ in both space directions, and a spacing $\Delta t$ in the time direction, the Forward Time Centred Space discretisation scheme for this equation is the following finite difference equation.

$$
\begin{align*}
\frac{\partial \phi}{\partial t} & =\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}-\rho(x, y)  \tag{71}\\
\frac{\phi_{i, j}^{n+1}-\phi_{i, j}^{n}}{\Delta t} & =\frac{\phi_{i+1, j}^{n}-2 \phi_{i, j}^{n}+\phi_{i-1, j}^{n}}{a^{2}}+\frac{\phi_{i, j+1}^{n}-2 \phi_{i, j}^{n}+\phi_{i, j-1}^{n}}{a^{2}}-\rho_{i, j}  \tag{72}\\
\phi_{i, j}^{n+1} & =\left(1-\frac{4 \Delta t}{a^{2}}\right) \phi_{i, j}^{n}+\frac{\Delta t}{a^{2}}\left(\phi_{i+1, j}^{n}+\phi_{i-1, j}^{n}+\phi_{i, j+1}^{n}+\phi_{i, j-1}^{n}\right)-\Delta t \rho_{i, j} \tag{73}
\end{align*}
$$

## [35 marks]

(c) The von Neumann stability criterion for this scheme is $\Delta t \leq a^{2} / 4$. The Jacobi method for solving the Poisson equation is to use the largest possible time step size $\Delta t=a^{2} / 4$. This amounts to iterating the following equation to evolve an arbitrary initial state $\phi$ until it converges to a stationary state.

$$
\begin{equation*}
\phi_{i, j}^{n+1}=\frac{1}{4}\left(\phi_{i+1, j}^{n}+\phi_{i-1, j}^{n}+\phi_{i, j+1}^{n}+\phi_{i, j-1}^{n}\right)-\frac{a^{2}}{4} \rho_{i, j} . \tag{74}
\end{equation*}
$$

## [10 marks]

The above procedure can be modified to obtain the GaussSeidel method by using values of $\phi(n+1)$ that have already been computed to calculate each $\phi_{i, j}^{n+1}$. This amounts to using the following equation

$$
\begin{equation*}
\phi_{i, j}^{n+1}=\frac{1}{4}\left(\phi_{i+1, j}^{n}+\phi_{i-1, j}^{n+1}+\phi_{i, j+1}^{n}+\phi_{i, j-1}^{n+1}\right)-\frac{a^{2}}{4} \rho_{i, j} . \tag{75}
\end{equation*}
$$

## [15 marks]

(d) Assuming that each iteration reduces the difference between the estimate and the true solution by a factor $\rho_{s}$, the number of iterations $n$ required to reduce this difference by a factor $10^{-p}$ is given by

$$
\begin{align*}
\rho_{s}^{n} & =10^{-p}  \tag{76}\\
\Longrightarrow n \ln \left(\rho_{s}\right) & =-p \ln (10)  \tag{77}\\
\Longrightarrow n & =\frac{-p \ln (10)}{\ln \left(\rho_{s}\right)} \tag{78}
\end{align*}
$$

## [15 marks]

For the Jacobi method we have $\rho_{s}=\rho_{J}=\cos \left(\frac{\pi}{N}\right)$. So the number of iterations of the Jacobi method needed to reduce the difference by a factor of $10^{-p}$ is

$$
\begin{equation*}
n_{J}=\frac{-p \ln (10)}{\ln \left(\rho_{J}\right)}=\frac{-p \ln (10)}{\ln \left(\cos \left(\frac{\pi}{N}\right)\right)} \tag{79}
\end{equation*}
$$

For the GaussSeidel method we have $\rho_{s}=\rho_{G S}=\cos ^{2}\left(\frac{\pi}{N}\right)$. So the number of iterations of the GaussSeidel method needed to reduce the difference by a factor of $10^{-p}$ is

$$
\begin{equation*}
n_{G S}=\frac{-p \ln (10)}{\ln \left(\rho_{G S}\right)}=\frac{-p \ln (10)}{\ln \left(\cos ^{2}\left(\frac{\pi}{N}\right)\right)}=\frac{-p \ln (10)}{2 \ln \left(\cos \left(\frac{\pi}{N}\right)\right)}=\frac{n_{J}}{2} \tag{80}
\end{equation*}
$$

Hence the GaussSeidel converges twice as fast as the Jacobi method.

## [10 marks]

