OLLSCOIL NA hÉIREANN MÁ NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH

MATHEMATICAL PHYSICS

REPEAT EXAMINATION
2018-2019
Computational Physics 2
MP468C

Prof. D. A. Johnston, Dr. J. Brennan. and Dr. J.-I. Skullerud

Time allowed: 2 hours
Answer ALL questions

1. (a) Use the transformation method to construct a recipe for obtaining pseudo-random numbers with probability distribution

$$
\begin{equation*}
p(y)=\frac{3 y^{2}}{y^{3}+1}, \quad y \in[0, \sqrt[3]{e-1}] \tag{1.1}
\end{equation*}
$$

You may assume a generator of uniform pseudo-random numbers between 0 and 1 is given
[11 marks]
(b) List the main steps of the rejection method for generating a pseudo-random number distributed according to $f(x)$, given a constant $M \in \mathbb{R}$ and generators for uniform pseudorandom numbers between 0 and 1 and pseudo-random numbers distributed according to $g(x)$ such that $f(x)<M g(x)$, for all $x \in \mathbb{R}$. Prove that the rejection method produces a variable Y distributed according to $f(x)$.
[15 marks]
(c) If x_{i} are N independent uniformly distributed random points within a d-dimensional volume V, and

$$
\begin{equation*}
I_{\mathrm{MC}}=\frac{V}{N} \sum_{i=1}^{N} f\left(x_{i}\right) \tag{1.2}
\end{equation*}
$$

show that the expectation value of $I_{M C}$ is equal to the integral of the function f over the volume V,

$$
\begin{equation*}
\left\langle I_{\mathrm{MC}}\right\rangle=\int_{V} f(x) d x \tag{1.3}
\end{equation*}
$$

Explain how this relation can be used to compute the integral I using Monte Carlo integration.
[12 marks]
(d) Assuming you have a random number generator to generate pseudo-random numbers x with the following distribution:

$$
\begin{equation*}
p(x)=e^{-x}, \quad x \in[0, \infty) . \tag{1.4}
\end{equation*}
$$

explain how you would use Monte Carlo integration with importance sampling to compute the following integral:

$$
\begin{equation*}
I=\int_{0}^{\infty} 4 x e^{(4-x)} d x \tag{1.5}
\end{equation*}
$$

[12 marks]
Page 2 of 10
2. (a) Using symmetric first and second derivatives, write down the discretised version of the equation

$$
\begin{equation*}
A \frac{\partial^{2} \phi}{\partial x^{2}}+B \frac{\partial^{2} \phi}{\partial y^{2}}+C \frac{\partial \phi}{\partial x}+D \frac{\partial \phi}{\partial y}=\rho(x, y), \quad 0 \leq x, y \leq L \tag{2.1}
\end{equation*}
$$

where A, B, C and D are known constants and $\rho(x, y)$ is a known function of x and y, on a square symmetric grid of $N \times N$ points with zero Dirichlet boundary conditions.
[13 marks]
(b) Explain how the resulting equation can be written as a matrix equation, $M \Phi=B$, where M is a sparse $N^{2} \times N^{2}$ matrix and B is a known vector of length N^{2}. Write down expressions for M and B, taking the boundary conditions into account.
[10 marks]
(c) Write down the Forward Time Centred Space discretisation scheme for the equation below, assuming equal lattice spacings $\delta x=\delta y=a$ in both space directions, and a spacing Δt in the time direction.

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}-\rho(x, y) \tag{2.2}
\end{equation*}
$$

[12 marks]
(d) Using the von Neumann stability criterion for this scheme, $\Delta t \leq a^{2} / 4$, derive the Jacobi method for solving the Poisson equation, and explain how it may be modified to obtain the Gauss-Seidel method.
[10 marks]
(e) Assuming that each iteration reduces the difference between your estimate and the true solution by a factor ρ_{s} (called the spectral radius), find how many iterations are required to reduce this difference by a factor 10^{-p}.
For the Poisson equation on a square $N \times N$ grid with homogeneous Dirichlet boundary conditions, the spectral radii for the Jacobi and Gauss-Seidel methods are given by

$$
\begin{equation*}
\text { Jacobi: } \rho_{J}=\cos \left(\frac{\pi}{N}\right), \quad \text { Gauss-Seidel: } \rho_{G S}=\cos ^{2}\left(\frac{\pi}{N}\right) \tag{2.3}
\end{equation*}
$$

Use this to show that the Gauss-Seidel method converges twice as fast as the Jacobi method, and that the number of iterations required for both to converge increases as N^{2} in the limit of large N .

Solutions: Question 1

(a) We want to find a function f such that, given X is uniformly distributed between 0 and 1 , $Y=f(X)$ is distributed according to

$$
\begin{equation*}
p(y)=\frac{3 y^{2}}{y^{3}+1} \tag{0.4}
\end{equation*}
$$

We know that

$$
\begin{align*}
& \text { Probability } X \in[a, b]=\text { Probability } Y \in[f(a), f(b)] \text {, } \tag{0.5}\\
& \Longrightarrow \int_{a}^{b} P_{X}(x) d x=\int_{f(a)}^{f(b)} P_{Y}(y) d y, \tag{0.6}\\
& \Longrightarrow \int_{0}^{x} d x^{\prime}=\int_{0}^{y} \frac{3 y^{\prime 2}}{y^{\prime 3}+1} d y^{\prime}, \tag{0.7}\\
& \Longrightarrow x=\int_{1}^{y^{3}+1} \frac{d \alpha}{\alpha}=\ln \left(y^{3}+1\right) \tag{0.8}
\end{align*}
$$

Inverting this gives

$$
\begin{equation*}
y=\sqrt[3]{e^{x}-1} \tag{0.9}
\end{equation*}
$$

Hence, generating a uniformly distributed number X between 0 and 1 and applying the function $f(x)=\sqrt[3]{e^{x}-1}$ produces a number Y which is distributed according to (0.4).
[11 marks]
(b) Given a constant $M \in \mathbb{R}$, the following three steps will produce a random number Y distributed according to $f(x)$ given generators for producing random numbers u distributed uniformly between 0 and 1 and X distributed according to $g(x)$.
(a) Generate a random number X according to $f(x)$.
(b) Generate a uniformly distributed random number u between 0 and 1.
(c) If $u<f(X) / M g(X)$, accept $Y=X$. Other wise reject X and execute these three steps again.

To prove Y is distributed according to $f(x)$, we first show that the probability of Y being less than x is given by

$$
\begin{equation*}
P(Y<x)=\int_{-\infty}^{x} f(\tilde{x}) d \tilde{x} \tag{0.10}
\end{equation*}
$$

Page 4 of 10

We note, for Y to be less than x, two things must be true. Firstly, the random number u must be less than $f(x) / M g(x)$. Then, provided that's true, X must be less than x. Hence, we have

$$
\begin{align*}
P(Y<x) & =P(X<x \mid u<f(x) / M g(x)) \tag{0.11}\\
& =\frac{P(X<x, u<f(x) / M g(x))}{u<f(x) / M g(x)} . \tag{0.12}
\end{align*}
$$

We now note, that since X and u are independent random variables, the tuple (X, u) is distributed in the plane according to the product of distributions for X and u.

$$
\begin{equation*}
(X, u) \sim P(x, y)=g(x) P_{\mathrm{uni}}^{[0,1]}(y) . \tag{0.13}
\end{equation*}
$$

Rewriting the probabilities appearing in (0.12) as integrals of the above distribution yields

$$
\begin{align*}
P(Y<x) & =\frac{\int_{-\infty}^{x}\left(\int_{0}^{f(\tilde{x}) / M g(\tilde{x})} g(\tilde{x}) d u\right) d \tilde{x}}{\int_{-\infty}^{+\infty}\left(\int_{0}^{f(\tilde{x}) / M g(\tilde{x})} g(\tilde{x}) d u\right) d \tilde{x}} \tag{0.14}\\
& =\frac{\int_{-\infty}^{x}[f(\tilde{x}) / M g(\tilde{x})] g(\tilde{x}) d \tilde{x}}{\int_{-\infty}^{+\infty}[f(\tilde{x}) / M g(\tilde{x})] g(\tilde{x}) d \tilde{x}} \tag{0.15}\\
& =\frac{\int_{-\infty}^{x} f(\tilde{x}) d \tilde{x}}{\int_{-\infty}^{+\infty} f(\tilde{x}) d \tilde{x}} \tag{0.16}\\
& =\int_{-\infty}^{x} f(\tilde{x}) d \tilde{x} \tag{0.17}
\end{align*}
$$

The probability density of Y is given by the derivative of its cumulative distribution. So the distribution of Y must be

$$
\begin{equation*}
P_{Y}(y)=\left.\frac{d}{d x}\left(\int_{-\infty}^{x} f(\tilde{x}) d \tilde{x}\right)\right|_{x=y}=f(y) \tag{0.18}
\end{equation*}
$$

proving that Y is distributed according to $f(x)$.
(c) If X is uniformly distributed inside the d-dimensional volume V, then the expectation value of the quantity $f(X)$ is

$$
\begin{equation*}
\langle f\rangle=\int_{V} f(x) P_{\mathrm{uni}}^{V}(x) d x=\int_{V} \frac{f(x)}{V} d x \tag{0.19}
\end{equation*}
$$

Hence the expectation value of I_{MC} is

$$
\begin{align*}
\left\langle I_{\mathrm{MC}}\right\rangle & =\frac{V}{N} \sum_{i=1}^{N}\langle f\rangle=\frac{V}{N}(N\langle f\rangle), \tag{0.20}\\
& =V \int_{V} \frac{f(x)}{V} d x=\int_{V} f(x) d x \tag{0.21}
\end{align*}
$$

For the first equality we used the fact that the $x_{i} \mathrm{~s}$ are independent. Hence the expectation value of I_{MC} is the integral of f over the region V.
[12 marks]
(d) Rewritting the integrand yields

$$
\begin{align*}
I & =\int_{0}^{\infty} 4 x e^{(4-x)} d x \tag{0.22}\\
& =4 e^{4} \int_{0}^{\infty} x e^{-x} d x \tag{0.23}
\end{align*}
$$

Hence, to compute I using Monte Carlo integration with importance sampling one can generate N pseudo-random numbers x_{i} distributed under $p(x)$ and compute

$$
\begin{equation*}
I=\frac{4 e^{4}}{N} \sum_{i=1}^{N} x \tag{0.24}
\end{equation*}
$$

[12 marks]

Solutions: Question 2

(a) The symmetric finite difference equation for the first derivative of a function f is

$$
\begin{equation*}
f^{\prime}(x)=\frac{f(x+a)-f(x-a)}{2 a} . \tag{0.25}
\end{equation*}
$$

The symmetric finite difference equation for the second derivative of a function f is

$$
\begin{equation*}
f^{\prime \prime}(x)=\frac{f(x+a)-2 f(x)+f(x-a)}{a^{2}} . \tag{0.26}
\end{equation*}
$$

Page 6 of 10

We discretise the defined square region of the x, y-plane into a symmetric $(N+2) \times(N+2)$ grid, with lattice spacing $a=\frac{L}{N+1}$. For a function $\phi(x, y)$ on the interior points of the lattice we write

$$
\begin{equation*}
\phi(x, y)=\phi(i a, j a)=\phi_{i, j}, \tag{0.27}
\end{equation*}
$$

where $i, j=1 \cdots N$. The first and second derivatives, at interior points of the lattice, are then given by

$$
\begin{align*}
\frac{\partial \phi}{\partial x}(x, y) & =\frac{\phi_{i+1, j}-\phi_{i-1, j}}{2 a}, \tag{0.28}\\
\frac{\partial \phi}{\partial x}(x, y) & =\frac{\phi_{i, j+1}-\phi_{i, j-1}}{2 a}, \tag{0.29}\\
\frac{\partial^{2} \phi}{\partial x^{2}}(x, y) & =\frac{\phi_{i+1, j}-2 \phi_{i, j}+\phi_{i-1, j}}{a^{2}}, \tag{0.30}\\
\frac{\partial^{2} \phi}{\partial y^{2}}(x, y) & =\frac{\phi_{i, j+1}-2 \phi_{i, j}+\phi_{i, j-1}}{a^{2}} . \tag{0.31}
\end{align*}
$$

Substituting these into the differential equation yields

$$
\begin{align*}
\rho(x, y) & =A \frac{\partial^{2} \phi}{\partial x^{2}}+B \frac{\partial^{2} \phi}{\partial y^{2}}+C \frac{\partial \phi}{\partial x}+D \frac{\partial \phi}{\partial y}, \tag{0.32}\\
& =A \frac{\phi_{i+1, j}-2 \phi_{i, j}+\phi_{i-1, j}}{a^{2}}+B \frac{\phi_{i, j+1}-2 \phi_{i, j}+\phi_{i, j-1}}{a^{2}} \tag{0.33}\\
& +C \frac{\phi_{i+1, j}-\phi_{i-1, j}}{2 a}+D \frac{\phi_{i, j+1}-\phi_{i, j-1}}{2 a}, \tag{0.34}\\
& =\frac{1}{a^{2}}\left[\left(A+\frac{C a}{2}\right) \phi_{i+1, j}+\left(A-\frac{C a}{2}\right) \phi_{i-1, j}\right. \tag{0.35}\\
& \left.+\left(B+\frac{D a}{2}\right) \phi_{i, j+1}+\left(B-\frac{D a}{2}\right) \phi_{i, j-1}-4 \phi_{i, j}\right] \tag{0.36}
\end{align*}
$$

[13 marks]
(b) We first define $\tilde{\rho}_{i, j}=a^{2} \rho(x, y)$ so we can write

$$
\begin{align*}
\tilde{\rho}_{i, j} & =\left(A+\frac{C a}{2}\right) \phi_{i+1, j}+\left(A-\frac{C a}{2}\right) \phi_{i-1, j} \tag{0.37}\\
& +\left(B+\frac{D a}{2}\right) \phi_{i, j+1}+\left(B-\frac{D a}{2}\right) \phi_{i, j-1}-4 \phi_{i, j} . \tag{0.38}
\end{align*}
$$

To write this as a matrix equation we number the sites of the $N \times N$ lattice 1 to N^{2}. The number we assign to the site (i, j) is $n=i+N j$. Then we can list the values of $\phi_{i, j}$ and $\tilde{\rho}_{i, j}$, from 1 to N^{2}, in column vectors Φ and B respectively. The above equation then turns into the matrix equation $M \Phi=B$, where M is a $N^{2} \times N^{2}$ matrix whose components are given by

$$
\begin{align*}
M_{m, n} & =\left(A+\frac{C a}{2}\right) \delta_{m, n+1}+\left(A-\frac{C a}{2}\right) \delta_{m, n-1} \tag{0.39}\\
& +\left(B+\frac{D a}{2}\right) \delta_{m, n+N}+\left(B-\frac{D a}{2}\right) \delta_{m, n-N}-4 \delta_{m, n} \tag{0.40}
\end{align*}
$$

and the vector B is given by

$$
\begin{equation*}
B_{n}=\tilde{\rho}_{n}=\tilde{\rho}_{i, j}, \tag{0.41}
\end{equation*}
$$

where $n=i+N j$.
Equations involving boundary terms, in the set of linear equations $M \Phi=B$, are treated differently since $\phi_{0, j}=\phi_{N+1, j}=\phi_{i, 0}=\phi_{i, N+1}=0$ (zero Dirichlet boundary conditions). This amounts to terms appearing in 0.40 being set to zero for certain values of m (certain row equations). Namely, the following terms in 0.40 are set to zero, (here $i(m)$ and $j(m)$ are the original indices.)

$$
\begin{aligned}
\text { When } i(m) & =1, \quad \delta_{m, n-1}=0, \\
\text { When } i(m) & =N, \quad \delta_{m, n+1}=0, \\
\text { When } j(m) & =1, \quad \delta_{m, n-N}=0, \\
\text { When } j(m) & =N, \quad \delta_{m, n+N}=0 .
\end{aligned}
$$

In general, to implement Dirichlet boundary conditions, one must subtract the boundary values from $\tilde{\rho}_{n}$ appropriately to form the vector B. However, since we want to implement zero Dirichlet boundary conditions, this amounts to subtracting zero, leaving the equation 0.41 unaltered.
[10 marks]
(c) If we use a lattice with equal lattice spacings $\delta x=\delta y=a$ in both space directions, and a spacing Δt in the time direction, the Forward Time Centred Space discretisation scheme for this equation is the following finite difference equation.

$$
\begin{align*}
\frac{\partial \phi}{\partial t} & =\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}-\rho(x, y), \tag{0.42}\\
\frac{\phi_{i, j}^{n+1}-\phi_{i, j}^{n}}{\Delta t} & =\frac{\phi_{i+1, j}^{n}-2 \phi_{i, j}^{n}+\phi_{i-1, j}^{n}}{a^{2}}+\frac{\phi_{i, j+1}^{n}-2 \phi_{i, j}^{n}+\phi_{i, j-1}^{n}}{a^{2}}-\rho_{i, j} \tag{0.43}\\
\phi_{i, j}^{n+1} & =\left(1-\frac{4 \Delta t}{a^{2}}\right) \phi_{i, j}^{n}+\frac{\Delta t}{a^{2}}\left(\phi_{i+1, j}^{n}+\phi_{i-1, j}^{n}+\phi_{i, j+1}^{n}+\phi_{i, j-1}^{n}\right)-\Delta t \rho_{i, j} \tag{0.44}
\end{align*}
$$

[12 marks]
(d) The von Neumann stability criterion for this scheme is $\Delta t \leq a^{2} / 4$. The Jacobi method for solving the Poisson equation is to use the largest possible time step size $\Delta t=a^{2} / 4$. This amounts to iterating the following equation to evolve an arbitrary initial state ϕ until it converges to a stationary state.

$$
\begin{equation*}
\phi_{i, j}^{n+1}=\frac{1}{4}\left(\phi_{i+1, j}^{n}+\phi_{i-1, j}^{n}+\phi_{i, j+1}^{n}+\phi_{i, j-1}^{n}\right)-\frac{a^{2}}{4} \rho_{i, j} . \tag{0.45}
\end{equation*}
$$

The above procedure can be modified to obtain the GaussSeidel method by using values of $\phi(n+1)$ that have already been computed to calculate each $\phi_{i, j}^{n+1}$. This amounts to using the following equation

$$
\begin{equation*}
\phi_{i, j}^{n+1}=\frac{1}{4}\left(\phi_{i+1, j}^{n}+\phi_{i-1, j}^{n+1}+\phi_{i, j+1}^{n}+\phi_{i, j-1}^{n+1}\right)-\frac{a^{2}}{4} \rho_{i, j} . \tag{0.46}
\end{equation*}
$$

[10 marks]
(e) Assuming that each iteration reduces the difference between the estimate and the true solution by a factor ρ_{s}, the number of iterations n required to reduce this difference by a factor 10^{-p} is given by

$$
\begin{align*}
\rho_{s}^{n} & =10^{-p} \tag{0.47}\\
\Longrightarrow n \ln \left(\rho_{s}\right) & =-p \ln (10), \tag{0.48}\\
\Longrightarrow n & =\frac{-p \ln (10)}{\ln \left(\rho_{s}\right)} \tag{0.49}
\end{align*}
$$

For the Jacobi method we have $\rho_{s}=\rho_{J}=\cos \left(\frac{\pi}{N}\right)$. So the number of iterations of the Jacobi method needed to reduce the difference by a factor of 10^{-p} is

$$
\begin{equation*}
n_{J}=\frac{-p \ln (10)}{\ln \left(\rho_{J}\right)}=\frac{-p \ln (10)}{\ln \left(\cos \left(\frac{\pi}{N}\right)\right)} \tag{0.50}
\end{equation*}
$$

For the GaussSeidel method we have $\rho_{s}=\rho_{G S}=\cos ^{2}\left(\frac{\pi}{N}\right)$. So the number of iterations of the GaussSeidel method needed to reduce the difference by a factor of 10^{-p} is

$$
\begin{equation*}
n_{G S}=\frac{-p \ln (10)}{\ln \left(\rho_{G S}\right)}=\frac{-p \ln (10)}{\ln \left(\cos ^{2}\left(\frac{\pi}{N}\right)\right)}=\frac{-p \ln (10)}{2 \ln \left(\cos \left(\frac{\pi}{N}\right)\right)}=\frac{n_{J}}{2} \tag{0.51}
\end{equation*}
$$

Hence the GaussSeidel converges twice as fast as the Jacobi method.

