
OLLSCOIL NA hÉIREANN MÁ NUAD
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1. (a) Assuming a generator of uniform pseudo-random numbers between 0 and 1 is given, use
the transformation method to construct a recipe for obtaining pseudo-random numbers
in the interval [a, b], with the following probability distribution.

p(y) =
y6

N
, (1.1)

where N is a normalisation constant. [10 marks]

(b) Given a generator of pseudo-random numbers distributed according to g(x) = 1
N

exp(−4x2),
where N is a normalisation constant, use the rejection method to construct a recipe for
obtaining pseudo-random numbers distributed over the real line according to

f(x) =
e−4x

2

M(x2 + 1)
, (1.2)

where is M a normalisation constant. You may assume C is a positive constant such that
f(x) ≤ Cg(x) for all x ∈ R. [10 marks]

(c) Assuming you have a random number generator to generate pseudo-random numbers x
with the following distribution:

p(x) =
2x

x2 + 1
, x ∈ [0,

√
e− 1 ]. (1.3)

explain how you would use Monte Carlo integration with importance sampling to compute
the following integral:

I =

∫ √e−1
0

4x3

3x2 + 3
dx (1.4)

[10 marks]

(d) Derive the master equation for a Markov chain,

P (X, tn+1)− P (X, tn) =
∑
Y

[P (Y, tn)T (Y → X)− P (X, tn)T (X → Y )]. (1.5)

Using this, derive the detailed balance condition for a stationary Markov chain,

P (X)T (X → Y ) = P (Y )T (Y → X). (1.6)

[10 marks]

(e) List the key steps of the Metropolis algorithm for creating an ergodic Markov chain which
leads to the stationary distribution P (X). Prove the detailed balance condition is satisfied
by the resultant Markov chain. [10 marks]
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2. (a) Consider the matrix equation
A · x = b, (2.1)

where A is a known N ×N matrix, b is a known vector of length N , and x is a vector of
N unknowns xi, i = 1, · · · , N . Explain how this equation may be solved using gaussian
elimination. [10 marks]

(b) Show that the number of floating point operations (multiplication, division, addition,
subtraction) required to obtain the solution this way grows like N3 as N increases.

[10 marks]

(c) Using symmetric finite difference equations for the first and second derivative, show that
the discretised version of the differential equation for the unknown function y(x)

∂2y

∂x2
(x) + g(x)

∂y

∂x
(x) + h(x)y(x) = f(x), y(a) = c1, y(b) = c2, (2.2)

where g(x), h(x) and f(x) are known functions of x, can be written in the form A ·y = b,
where A is a tridiagonal matrix and b is a known vector. [12 marks]

(d) Consider the 1 + 1 dimensional diffusion equation

∂φ

∂t
= D

∂2φ

∂x2
. (2.3)

Write down the Forward Time Centred Space discretisation scheme for this equation,
assuming a lattice spacing δx in the space direction and a spacing ∆t in the time direction.

[12 marks]

(e) Using von Neumann stability analysis, derive the stability criterion for this scheme

∆t ≤ (δx)2

2D
(2.4)

[6 marks]
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Solutions: Question 1

(a) We want to find a function f such that, given X is uniformly distributed between 0 and 1,
Y = f(X) is distributed in the interval [a, b] according to

p(y) =
y6

N
. (0.5)

We know that

Probability X ∈ [ε, δ] = Probability Y ∈ [f(ε), f(δ)], (0.6)

=⇒
∫ δ

ε

PX(x)dx =

∫ f(δ)

f(ε)

PY (y)dy, (0.7)

=⇒
∫ x

0

dx′ =

∫ y

0

(y′)6

N
dy′, (0.8)

=⇒ x =
1

N

[
y7

7
− a7

7

]
. (0.9)

Inverting this gives

y =
7
√

7Nx+ a7. (0.10)

Hence, generating a uniformly distributed number X between 0 and 1 and applying the function
f(x) = 7

√
7Nx+ a7 produces a number Y which is distributed according to (0.5). [10 marks]

(b) Given a constant C ∈ R, the following three steps will produce a random number Y distributed
according to g(x) given generators for producing random numbers u distributed uniformly
between 0 and 1 and X distributed according to f(x).

(a) Generate a random number X according to g(x).

(b) Generate a uniformly distributed random number u between 0 and 1.

(c) If u < f(X)/Cg(X), accept Y = X. Other wise reject X and execute these three steps
again.

[7 marks]

Using the expressions for f(x) and g(x) given in the question, these steps become the following

(a) Generate a random number X according to g(x).

(b) Generate a uniformly distributed random number u between 0 and 1.
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(c) If u < N
CM(X2+1)

, accept Y = X. Other wise reject X and execute these three steps again.

[3 marks]

(c) Rewritting the integrand yields

I =

∫ √e−1
0

4x3

3x2 + 3
dx (0.11)

=

∫ √e−1
0

2x2

3

2x

x2 + 1
dx (0.12)

=

∫ √e−1
0

2x2

3
p(x)dx (0.13)

Hence, to compute I using Monte Carlo integration with importance sampling one can generate
N pseudo-random numbers xi distributed under p(x) and compute

I =
2

3N

N∑
i=1

x2 (0.14)

[10 marks]

(d) If the probability of being in state X at time tn is P (X, tn) and the transition probabilities of
the Markov chain are denoted by T (X → Y ), then the probability of being in state X at time
tn+1 is

P (X, tn+1) =
∑
Y

P (Y, tn)T (Y → X). (0.15)

Also, we know

∑
Y

T (X → Y ) = 1 =⇒ P (X, tn) = P (X, tn)
∑
Y

T (X → Y ). (0.16)

Subtracting the equation for P (X, tn+1) and P (X, tn) to get the change in probability of being
in state X after one step of the Markov chain yields the master equation:

P (X, tn+1)− P (X, tn) =
∑
Y

[P (Y, tn)T (Y → X)− P (X, tn)T (X → Y )]. (0.17)

For a stationary Markov chain, the probabilities P (X, t) don’t change in time and so the left
hand side of the master equation is zero. To ensure the Markov chain is stationary for the
probabilities P (X), we may require that each term in the sum on the right hand side of the
master equation is zero. This gives the condition of detailed balance:
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P (Y )T (Y → X)− P (X)T (X → Y ) = 0 =⇒ P (X)T (X → Y ) = P (Y )T (Y → X). (0.18)

[10 marks]

(e) We first choose a Markov chain where each step of the process can be separated into two steps:
a trial step where a new state Y is proposed to be the new state, given the current state X, and
an acceptance step where the proposed state Y is accepted as the new state with probability
AX,Y , other wise the system remains in state X. The transition probabilities of such a process
can be factored into a trial probability ωX,Y (the probability of choosing the state Y given the
current state X), which we choose to be symmetric in X and Y , and an acceptance probability
AX,Y .

T (X → Y ) = ωX,YAX,Y . (0.19)

The Metropolis algorithm is the following choice of acceptance probability.

AX,Y =

{
1 if P (X) ≤ P (Y )

P (Y )
P (X)

if P (Y ) ≤ P (X)
. (0.20)

[6 marks]

To see this Markov chain satisfies the condition of detailed balance we can look at the following
quotient.

T (X → Y )

T (Y → X)
=
ωX,YAX,Y
ωY,XAY,X

=
AX,Y
AY,X

=
P (Y )

P (X)
. (0.21)

This is the detailed balance condition. [4 marks]

Solutions: Question 2

(a) The equation A · y = b can be solved by repeatedly replacing rows of the equation with a
linear combination of themselves and another row in the following way.

(a) First divide the first row by its first element so that the top left element is 1.

(b) Subtract the first row from the remaining N − 1 rows so that the first element in each is
0.

(c) repeat (i) and (ii) on the remaining (N − 1)× (N − 1) sub-matrix.

(d) Continue until the matrix A is in upper triangular form.

(e) the vector x can then be found by back substitution.
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[10 marks]

(b) In the first step of Gaussian elimination on an N ×N matrix we must perform N division to
(N − 1 elements of A and the first element of b). Then there are N(N − 1) multiplications
and N(N − 1) subtractions to be made so that the first element of each of the N − 1 remaining
rows is zero. So there are N + 2N(N − 1) = N(2N − 1) operations in total in the first step.
This procedure is then repeated in the second step in the (N−1)× (N−1) sub-matrix. Hence,
the total number of operations is

N∑
n=1

n(2n− 1) ≈ N3. (0.22)

[10 marks]

(c) The symmetric finite difference equation for the first derivative of a function f is

f ′(x) =
f(x+ a)− f(x− a)

2a
. (0.23)

The symmetric finite difference equation for the second derivative of a function f is

f ′′(x) =
f(x+ a)− 2f(x) + f(x− a)

a2
. (0.24)

We discretise an interval of the real line, [a, b] into a set of N + 2 points separated by a spacing
dx. For a function y(x) on the interval we write

y(x) = y(x0 + idx) = yi, (0.25)

where i, j = 0 · · ·N +1. Similarly f(x) = f(xi) = fi. The first and second derivatives at points
away from the boundary are then given by

∂y

∂x
(x) =

yi+1 − yi−1
2a

, (0.26)

∂2y

∂x2
(x) =

yi+1 − 2yi + yi−1
a2

. (0.27)

Substituting these into the differential equation yields
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∂2φ

∂x2
+ g(x)

∂φ

∂x
+ h(x)y(x) = f(x), (0.28)

=⇒ yi+1 − 2yi + yi−1
dx2

+ gi
yi+1 − yi−1

2dx
+ hiyi = fi (0.29)

=⇒
(

1 +
gidx

2

)
yi+1 + (hi − 2)yi +

(
1− gidx

2

)
yi−1+ = dx2fi (0.30)

[10 marks]

The last equation can be written in the form A ·y = b where A is a N ×N tridiagonal matrix
where the elements of the main diagonal equal are given by the vector (hi − 2), the elements
of the first sub diagonal are given by the vector 1 − gidx

2
and the elements of the first super

diagonal are given by the vector 1 + gidx
2

. The elements of the vector y are yi. The first and
last elements of b are dx2f1 − c1 and dx2fN − c2 respectively and dx2fi for i = 2 · · ·N − 1.

[2 marks]

(d) The forward finite difference equation for the first derivative of a function f is

f ′(x) =
f(x+ a)− f(x)

a
. (0.31)

The centred finite difference equation for the second derivative of a function f is

f ′′(x) =
f(x+ a)− 2f(x) + f(x− a)

a2
. (0.32)

If we discretise the x, t-plane into a lattice with spacing δx in the space direction and ∆t in
the time direction we can write

φ(xi, tn) = φ(x0 + iδx, t0 + n∆t) = φni , (0.33)

where (xi, tn) is a point on the lattice. Then the Forward Time Centred Space discretisation
scheme for this equation is the following finite difference equation.

∂φ

∂t
= D

∂2φ

∂x2
, (0.34)

φn+1
i − φni

∆t
= D

φni+1 − 2φni + φni−1
(δx)2

(0.35)

φn+1
i =

(
1− 2D∆t

(δx)2

)
φni +

D∆t

(δx)2
(
φni+1 + φni−1

)
(0.36)

[12 marks]
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(e) Considering Φ(k), the Fourier transform of φ(x) in the space direction, each Fourier mode
evolves independently in time for the diffusion equation. This gives the eigenmode evolution

Φn+1
K = ξkΦ

n
K =⇒ Φn

K = ξnkΦ0
K . (0.37)

Inserting this into the FTCS scheme for the diffusion equation gives

ξn+1
k eijkδx − ξnk eijkδx

∆t
= Dξnk

ei(j−1)kδx − 2eijkδx + ei(j+1)kδx

(δx)2
. (0.38)

Letting n = 0 and rearranging gives:

ξk = 1− 2D∆t

(δx)2
(
e−ikδx − 2 + eikδx

)
= 1− 4D∆t

(δx)2
sin2

(
kδx

2

)
. (0.39)

For stability we need |ξk| ≤ 1 for all k. However, the above equation is always less than one,
so we need ξk ≥ −1 for all k. Therefore, we need

4D∆t

(δx)2
sin2

(
kδx

2

)
≤ 2. (0.40)

The worst case is when k is such that sin2(kδx
2

) = 1. Hence, to ensure stability, we should
choose

4D∆t

(δx)2
≤ 2 =⇒ ∆t ≤ (δx)2

2D
. (0.41)

[6 marks]
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