
MP468 Computational Physics II Notes

John Brennan†

†Department of Theoretical Physics, Maynooth University

Contents

1 Part A: Random numbers and Monte Carlo methods 2
1.1 Introduction . 2
1.2 Random numbers . 4

1.2.1 The Transformation Method 5
1.2.2 The Rejection Method . 7

1.3 Monte Carlo integration . 10
1.3.1 Importance Sampling . 12

1.4 Stochastic processes . 13
1.4.1 (Aside) Convergence of Markov chains 21
1.4.2 The Metropolis Algorithm . 24
1.4.3 The Heatbath Algorithm . 25
1.4.4 Autocorrelation . 26

2 Part B: Differential Equations 26
2.1 Matrices and Linear differential equations 26
2.2 Boundary value PDEs . 27
2.3 Initial value PDEs . 27
2.4 Relaxation methods . 29

2.4.1 Jacobi method . 29
2.4.2 Gauss-Seidel method . 29
2.4.3 Convergence . 30
2.4.4 Successive over-relaxation . 31
2.4.5 Residual . 31

1

1 Part A: Random numbers and Monte Carlo meth-

ods

1.1 Introduction

The first topic we cover in this course is how to produce random real numbers with
different distributions. To motivate the topic, we begin by briefly outlining how
random numbers can be used to solve integrals. Let’s suppose we want to integrate
the function f over the interval [a, b].

I =

∫ b

a

f(x)dx. (1)

In MP368, we would compute this integral by first dividing the interval [a, b] into N
subintervals of length dx = b−a

N
, for some large number N , and then approximate

the area under the curve of f and over each subinterval as the area of a rectangle or
trapezium. The integral was then calculated by adding up all of these approximations.

Another way to calculate the integral is to pick a large number N of random points
xi uniformly distributed in the interval [a, b] and evaluate the function f at each of
them. Then we can estimate the average value of f over the interval [a, b] and the
integral can be calculated using the fact that the area under the curve is equal to the
length b− a times the average value of f over [a, b].

I ≈ (b− a)
N∑
i=1

f(xi)

N
(2)

An essential part of this method (known as a Monte Carlo method) is generating
random numbers in the interval [a, b] with the right distribution. For example, if the
random numbers we generate, in [a, b], happen to be distributed in such a way that
they cluster about a particular point c in [a, b], then our estimate for the average of
f will be skewed and our evaluation of I won’t be accurate. For the Monte Carlo
method just described, we want our randomly chosen points, in the domain we’re
integrating over, to be uniformly distributed. For us, generating numbers uniformly
distributed over a finite interval is easy (the numpy function numpy.random.rand
generates a random number x in the interval [0, 1) and so we can get a uniformly
random number y in [a, b) by taking y = (b − a)x + a). However, in general, we
might want a more complicated distribution of numbers. For example, let’s suppose
we want to integrate a function over the surface of a sphere using the Monte Carlo
method described above. To do this, we’ll need to generate a large collection of
random points on the sphere that are uniformly distributed. To achieve this one
might parametrise the sphere using spherical coordinates (θ, φ) ∈ [0, π)× [0, 2π) and
then generate N uniform random numbers in [0, π) and N uniform random numbers
in [0, 2π) resulting in N random points (θi, φi) on the sphere. However, the resultant
collection of random points on the sphere will not be uniformly distributed over the
sphere. The following python code demonstrates this by producing such a collection

2

(a) (b)

Figure 1

of points on the sphere and plotting them as shown in Fig. 1a and Fig. 1b. In Fig. 1a
we see the generated collection of points are uniformly distributed in the coordinate
patch [0, π)× [0, 2π) while in Fig. 1b we see the points are not uniformly distributed
over the sphere with points clustering around the north and south poles of the sphere.

1 import numpy as np
2 import numpy . random as ran
3 import matp lo t l i b . pyplot as p l t
4 from mp l t o o l k i t s . mplot3d import Axes3D
5
6 N = 5000 # Number o f po in t s
7
8 theta = np . p i ∗ ran . rand (N) # uniform po in t s between 0 and pi
9

10 phi = 2∗np . p i ∗ ran . rand (N) # uniform po in t s between 0 and 2 pi
11
12 # 3 dimens iona l coo rd ina t e s
13 x = np . s i n (theta) ∗np . cos (phi)
14 y = np . s i n (theta) ∗np . s i n (phi)
15 z = np . cos (theta)
16
17 # p lo t po in t s on the sphere
18 f i g = p l t . f i g u r e (1)
19 ax = f i g . gca (p r o j e c t i o n=’ 3d ’)
20 ax . s c a t t e r (x , y , z , s=1)
21
22 # p lo t po in t s on the coord inate patch
23 p l t . f i g u r e (2)
24 p l t . p l o t (theta , phi , ’ o ’ , markers i ze=1)
25 p l t . x l ab e l (’ theta ’)
26 p l t . y l ab e l (’ phi ’)

3

(a) (b)

Figure 2

The clustering around the north and south poles of the sphere is an affect of the
coordinate system used. Recall the area element of the sphere in these coordinates
is dΩ = sin(θ)dφdθ which has its largest values at θ ≈ π (the equator) and has its
lowest values at θ ≈ 0, 2π (the north and south poles). This means a small square of
the coordinate patch, with area A, is mapped to a small patch of the sphere whose
area is sin(θ)A. Hence, if the average density of random points within a small square
of the coordinate patch is ρ, the average density in a patch of the sphere becomes
ρ÷ sin(θ), i.e. the density near the poles is larger than the density of points near the
equator. To rectify this, we need to generate random points (θi, φi) in the coordinate
patch whose probability of appearing in a small square decreases as the square moves
away from θ ≈ π (the equator) the same way the area of the square decreases when
it’s mapped to the sphere. This can be achieved by using the following line of code
to generate numbers θi instead of the one used previously on line 8 (This line of code
may seem arbitrary but we will show why this works in the next section).

1 # non−uniform po in t s between 0 and pi
2 theta = np . a r cco s (1−2∗(ran . rand (N)))

Replacing the line of code used before which generated random numbers θi (line 8)
with the above line of code and running it will produce the figures shown in Fig. 2a and
Fig. 2b. We now see the density of points in the coordinate patch drops significantly
near the edges where θ ≈ 0, 2π and the clustering of points near the north and south
poles has disappeared.

1.2 Random numbers

The first thing to note about random numbers generated on a computer is that they’re
not actually random. The only way to generate truly random numbers is by mea-
suring physical processes like flipping a coin, throwing a dice, thermal fluctuations
in the environment, quantum fluctuations of particles or chaotic systems such as the
weather. In a typical computer you can’t do any of these, all you have is a processor

4

that can execute a list of predefined instructions. For that reason, most program-
ming languages use arithmetic to produce sequences of numbers which look random
and are uncorrelated (meaning there’s no obvious pattern to successive numbers).
Such numbers are called pseudo-random numbers. Since pseudo-random numbers
are generated by a deterministic algorithm, a sequence of pseudo-random numbers is
completely determined by the initial number of the sequence (usually called the seed)
and will eventually start repeating itself after a finite number terms. For the rest of
these notes we’ll refer to pseudo-random numbers as random numbers.

A probability density on R is a real function P which is non-negative everywhere
such that ∫ ∞

−∞
P (x)dx = 1. (3)

If X is a random variable with distribution P , then the probability that X takes a
value in the subset A ⊂ R is given by

ProbX(A) =

∫
A

P (x)dx. (4)

In numpy.random we have access to a number of different numerical routines for
generating random numbers under a variety of different distributions. Two notable
functions are the rand and randn functions. The function rand generates uniformly
distributed random numbers between 0 and 1, i.e. it generates a real number under
the distribution

P (x) =

{
1 if 0 ≤ x < 1
0 otherwise

, (5)

The function randn generates a real number under the normal (or Gaussian) distri-
bution:

N(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
. (6)

It often happens in practise that we need to generate numbers under a distribution
that isn’t offered by any of the functions in numpy (or which ever numerical package
we’re using). We’ll now cover two methods, known as the transformation method
and the rejection method, which will give us the ability to generate random numbers
under any distribution.

1.2.1 The Transformation Method

The transformation method is a way of generating random numbers whose premise we
introduce by answering following question: If X is a random variable with distribution
P and f : R → R is a function, how is the random variable Y = f(X) distributed
over R? To answer this, we first note that the probability of X being in the interval
(a, b) must be equal to the probability of Y being in the interval (f(a), f(b)). Hence,
we have

5

Probability X ∈ [a, b] = Probability Y ∈ [f(a), f(b)], (7)

=⇒
∫ b

a

PX(x)dx =

∫ f(b)

f(a)

PY (y)dy, (8)

=

∫ b

a

PY (f(x))f ′(x)dx. (9)

As this must be true for every interval [a, b], the integrands must be equal, giving us
the relation

PY (y) = PY (f(x)) =
PX(x)

|f ′(x)|
. (10)

where the absolute value appears in the denominator to ensure the probability dis-
tribution is positive everywhere. The point here is that, given a random variable
X with a certain distribution, we can get a new random variable Y with a different
distribution by applying a function to it. The idea behind the transformation method
is to try find a function f which, when we compose it with a random variable, gives
us a new random variable which is distributed the way we want.

If we can generate numbers distributed under PX and we want random numbers
distributed under PY , how can we find the appropriate function f to use? We can
use (7) to write, ∫ x

−∞
PX(x̃)dx̃ =

∫ f(x)

−∞
PY (y)dy, (11)

and by computing these integrals we may be able to find f . For instance, if the
distribution PX is the uniform distribution (5) and x ∈ [0, 1], then we can write

∫ x

−∞
PX(x̃)dx̃ =

∫ 0

−∞
PX(x̃)dx̃+

∫ x

0

PX(x̃)dx̃ (12)

=

∫ 0

−∞
(0)dx̃+

∫ x

0

dx̃ = x. (13)

Hence, in this case (11) becomes

x =

∫ f(x)

−∞
PY (y)dy. (14)

Now, computing the integral on the right hand side of the above equation will give us
x as a function of y. Inverting the resulting expression gives us the desired function f .
As an example, we go back to the problem of generating points uniformly distributed
on a sphere. Recall, this problem was solved by generating random numbers between
0 and π distributed according to 1

2
sin(θ).

6

Example

We want to generate random numbers y with the following distribution:

P (y) =
sin(y)

2
, where 0 < y < π.

Substituting this distribution in for PY in (14) gives us the following:

x =

∫ y

0

sin(ỹ)

2
dỹ =

[
−cos(ỹ)

2

]y
0

=
1

2
[1− cos(y)].

Inverting this expression yields

y = cos−1(1− 2x).

Thus, generating a uniformly distributed number x between 0 and 1 and then
plugging it into the above expression produces a random number y with the
desired distribution. (Notice, this justifies the line we added to our python
script to get a uniform distribution of points on a sphere.)

The transformation method, together with the prngs in numpy, gives us the ability
to generate random numbers under a large class of distributions. However, there are
situations where it’s not possible to use the transformation method. For instance, the
integral in (14) may not be expressible in terms of elementary functions, and even if
it is there’s no guarantee that the expression is invertible. For situations where we’re
unable to use the transformation method we can use the rejection method.

1.2.2 The Rejection Method

The rejection method (or the accept-reject algorithm) is a method for generating
random numbers which are distributed according to any probability density function.
The idea behind the rejection method can be illustrated by the following exercise:
First, choose a probability density function p(x) on the interval [a, b] and plot the
graph of p(x) in the xy-plane (let’s say the graph looks like Fig.3a). Then, draw a
horizontal line, a height M above the x-axis, such that the graph of p(x) is below
this line and choose a number of random points uniformly distributed in the xy-plane
above the interval [a, b] and beneath our horizontal line as in Fig.3b. If we now throw
away all of the randomly chosen points above the graph of p(x) (like in Fig.3c), the
x-coordinate of the remaining points will be distributed in the interval [a, b] according
to p(x).

7

(a) (b) (c)

Figure 3

The key step, in the above exercise, for producing random numbers with distribu-
tion p(x), is the throwing away of points between the graph of p(x) and the horizontal
line of height M . This step ensures the probability of a point remaining and not be-
ing thrown away is high where p(x) is high and low where p(x) is low. Notice, if the
y-coordinates of the randomly chosen points are generated by first generating a uni-
form number u between 0 and 1 and then multiplying u by M (i.e. yi = Mui), then
we can rephrase this key step as follows: accept the randomly chosen point (xi, yi) if
ui < p(x)/M , otherwise throw it away.

What we’ve just described is called the rejection method for producing random
numbers with distribution p(x) from a set of random numbers uniformly distributed
on the same domain (Producing random points under the straight line of height M
required the x-coordinates of the points to be uniform in [a, b]). However, the use of
a uniform distribution to begin with isn’t necessary. Instead of drawing a straight
line above the graph of p(x), we could have drawn the graph of any other probability
distribution f(x) times a constant M such that the graph of f(x)M is above the graph
of p(x) at every point x. Repeating the exercise with this new curve, instead of a
straight line, leads us to the following recipe for generating numbers with distribution
p(x):

Suppose we’re given generators for producing random numbers u distributed uni-
formly between 0 and 1 and X distributed according to f(x). Given a constant
M ∈ R such that p(x) < Mf(x) for all x ∈ R, the following three steps will produce
a random number Y distributed according to p(x):

1. Generate a random number X according to f(x).

2. Generate a uniformly distributed random number u between 0 and 1.

3. If u < p(X)/Mf(X), accept Y = X. Other wise reject X and execute these
three steps again.

To prove Y is distributed according to p(x), we first show that the probability of Y
being less than x is given by

P (Y < x) =

∫ x

−∞
p(x̃)dx̃. (15)

8

We note, for Y to be less than x, two things must be true. Firstly, the random number
u must be less than p(X)/Mf(X). Then, provided that’s true, X must be less than
x. Hence, we have

P (Y < x) = P (X < x|u < p(X)/Mf(X)), (16)

=
P (X < x, u < p(X)/Mf(X))

P (u < p(X)/Mf(X))
. (17)

We now note, that since X and u are independent random variables, the tuple (X, u)
is distributed in the plane according to the product of distributions for X and u.

(X, u) ∼ P (x, y) = f(x)P
[0,1]

uni(y). (18)

Rewriting the probabilities appearing in (17) as integrals of the above distribution
yields

P (Y < x) =

∫ x
−∞

(∫ p(x̃)/Mf(x̃)

0
f(x̃)dy

)
dx̃∫ +∞

−∞

(∫ p(x̃)/Mf(x̃)

0
f(x̃)dy

)
dx̃

(19)

=

∫ x
−∞ [p(x̃)/Mf(x̃)] f(x̃)dx̃∫ +∞
−∞ [p(x̃)/Mf(x̃)] f(x̃)dx̃

(20)

=

∫ x
−∞ p(x̃)dx̃∫ +∞
−∞ p(x̃)dx̃

(21)

=

∫ x

−∞
p(x̃)dx̃ (22)

The probability density of Y is given by the derivative of its cumulative distribution.
So the distribution of Y must be

PY (y) =
d

dx

(∫ x

−∞
p(x̃)dx̃

) ∣∣∣
x=y

= p(y), (23)

proving that Y is distributed according to p(x).
To give a hand waving explanation of the rejection method we first note the

constant M is related to the number of rejections made while executing the algorithm.
Specifically, if we want N numbers distributed under p(x), we will typically need to
generate about M ×N numbers under f(x) during execution (For this method to be
efficient, we’d like M to be as close to 1 as possible). Now, if we generate M × N
numbers distributed according to f(x), we’ll have about f(x)dxM × N numbers in
the interval (x, x+ dx). Whereas we want N numbers under p(x) such that we have
about p(x)dxN numbers in the interval (x, x+dx). Therefore we need to throw away

(or reject) p(x)N
f(x)M×N of the numbers we have in (x, x + dx). We achieve this by only

accepting numbers in (x, x+ dx), generated under f(x), with probability p(x)
f(x)M

.

9

1.3 Monte Carlo integration

Monte Carlo integration is a method for integrating a function over some domain,
which utilises a theorem from probability theory known as the law of large numbers.
The law of large numbers states that the mean of N independent, identically dis-
tributed random variables tends to the average value of the variables as N tends to
infinity. In the context of integrating a function f over a domain A, this means if we
choose N random points xi in A, distributed according to p(x), then the mean of the
numbers f(xi) tends to the average of f with respect to p(x) as N tends to infinity.

N∑
i=1

f(xi)

N
−−−→
N→∞

〈f〉p =

∫
A

f(x)p(x)dx. (24)

To see how this helps us evaluate integrals, consider the integral of the function f
over the set A ⊂ Rn:

I =

∫
A

f(x)dx. (25)

If we let X be a random variable taking values in Rn with probability

PX(x) =


1

Vol(A)
, when x ∈ A

0 otherwise
(26)

Then, the average value of f(X) is

〈f(X)〉 =

∫
Rn
f(x)PX(x)dx =

∫
A

f(x)

Vol(A)
dx =

I

Vol(A)
. (27)

Hence the integral of f over A is equal to the volume of A times the average of f .
Therefore, we can estimate the integral I by, firstly, generating a large number N
of uniformly distributed points in A and then calculating the mean of f evaluated
at the these points to estimate the average of f in A. Multiplying this estimate by
the volume of A gives us an estimate for the value of I. The law of large numbers
provides assurance our estimate of I tends to the true value of I as N grows. We
denote our estimate of I by IMC .

I = Vol(A)〈f〉 ≈ Vol(A)

N

N∑
i=1

f(xi) = IMC . (28)

Once we’ve estimated an integral using his technique, the natural thing to do is
ask about how accurate our estimate is. We need some way of measuring how wrong
our answer is. The way we measure the error is to think of our estimate IMC as a
random variable taking values in R (or whatever the codomain of f is). Our estimate
of I is a function of N random variables uniformly distributed in A, so IMC is itself
also a random variable with its own distribution in R. The distribution of IMC will
be, for large enough N , a sharply peaked bell shaped distribution centred around the

10

Figure 4: Here we take I =
∫ π
0

sin(x)dx = 2 and plot the distribution of IMC for
different values of N . These curves were calculated by sampling IMC 100,000 times
for each N and using the function numpy.histogram() to get their distribution. We
see for large N the distribution is sharply peaked around I.

true value of I (This is ensured by the central limit theorem) see Fig.4. The error of
IMC can be measured by measuring how spread out this distribution is around I. The
standard way to measure how spread out a distribution is, is to calculate its standard
deviation which is defined as the square root of the distributions variance.

Err(IMC) = σIMC
=
√

Var(IMC). (29)

Recall, the variance of a random variable X is defined as the average square distance
of X from the average of X (〈X〉).

Var(X) =

∫
P (x)

[
X2 − 〈X〉2

]
dx, (30)

=

∫
P (x)X2dx− 〈X〉2

∫
P (x)dx, (31)

= 〈X2〉 − 〈X〉2. (32)

We could calculate the error of IMC by sampling IMC a large number of times in
order to calculate 〈I2MC〉 and 〈IMC〉, however this would be a lot of work. We find a
better approach by subbing IMC into the above formula for the variance of a random
variable:

11

var(IMC) = 〈(IMC − 〈IMC〉)2〉, (33)

= 〈(IMC)2〉 − 〈IMC〉2, (34)

=

〈(
V

N

N∑
i=1

f(xi)

)2〉
−

〈
V

N

N∑
i=1

f(xi)

〉2

, (35)

=
V 2

N2

〈(N∑
i=1

f(xi)

)2〉
−

〈
N∑
i=1

f(xi)

〉2
 , (36)

=
V 2

N2


〈

N∑
i=1

f(xi)
2 +

N∑
i,j=1
i 6=j

f(xi)f(xj)

〉
− (N〈f〉)2

 , (37)

=
V 2

N2

N〈f 2〉+
N∑

i,j=1
i 6=j

〈f〉〈f〉 −N2〈f〉2

 , (38)

=
V 2

N2

[
N〈f 2〉+

N(N − 1)

N
〈f〉2 −N2〈f〉2

]
, (39)

=
V 2

N

[
〈f 2〉 − 〈f〉2

]
. (40)

So when we’re in the process of estimating 〈f〉 we should also estimate 〈f 2〉 (which
can be done at the same time). We can then calculate the error of IMC as:

Err(IMC) =
V√
N

√
〈f 2〉 − 〈f〉2. (41)

It’s worth noting at this point that the error of our estimate decreases like 1√
N

as
N increases. Moreover, the error is independent of the dimension d of the domain
being integrated over. This is contrary to quadrature methods whose error grows as
the dimension increases (e.g.. for the trapezium method Err ≈ N−2/d which is better
than that for Monte Carlo if d < 4). This increase in error due to an increase in
dimension is sometimes referred to as the curse of dimensionality and is why Monte
Carlo methods are preferred over quadrature methods in high dimensions.

1.3.1 Importance Sampling

Up until now, we wanted to generate points with a uniform distribution over a domain
we’re trying to integrate over in order to avoid bad estimates. However, there are
situations where it is beneficial to generate points with a different distribution. These
are situations where the function we’re trying to integrate happens to be zero in a
large part of the domain (or at least close to zero). The idea is to choose a distribution
which is unlikely to generate points where f is zero. That way we’re not wasting time

12

integrating zero as the only parts of the domain that matter in an integral are the
parts where f is non-zero. Before seeing how this works in practice we note that the
Monte Carlo method of integrating is based on the law of large numbers which states:
if f is a function and xi with i = 1, 2 · · ·N are N random points distributed under
P (x), then in the limit N →∞:

1

N

N∑
i=1

f(xi)→ 〈f〉P ≡
∫ ∞
−∞

f(x)P (x)dx. (42)

Notice, if P (x) = 1
V

in a region of volume V and zero everywhere else (i.e. is uniform),
we recover our method for estimating the average value of f over a the region.

1

N

N∑
i=1

f(xi)→ 〈f〉 ≡
1

V

∫
V

f(x)dx. (43)

Now, to illustrate the idea, say we want to integrate f over the region V and we
have a generator of random points distributed according to q(x), then we can rephrase
the integral as

I =

∫
V

f(x)dx =

∫
V

f(x)

q(x)
q(x)dx. (44)

Then, using the law of large numbers, we can approximate this integral by generating
a large number N of random points xi distributed according to q(x), evaluating the

quantity f(xi)
q(xi)

for each xi and then calculating their average.

1

N

N∑
i=1

f(xi)

q(xi)
≈ I. (45)

As mentioned, this method only really improves the accuracy of our calculation if
the probability distribution q(x) is close to zero when f is close to zero and non-zero
where f is non-zero. More definitively, this method gives us an improvement when
the fraction f(x)

q(x)
is roughly constant.

If
f(x)

q(x)
≈ constant, then σ =

1√
N

√〈
f 2

q2

〉
−
〈
f

q

〉2

≈ 0. (46)

1.4 Stochastic processes

We mentioned that the Monte Carlo method is our preferred method of integration
in high dimensions due to the error’s independence of the dimension. However, gen-
erating random points with a particular distribution in high dimensions can be a lot
of work using the methods discussed so far. For example, if we wanted to integrate
over a domain whose dimension is 10’000, we would have to generate 10’000 numbers
just to get a single random point in the domain. As we need a large number of points
in the domain to do the integration accurately, this quickly turns into a lot of work.

13

A better way of doing this is to use what’s called a stochastic process to simulate the
distribution used in the integration. In this section, we’ll discuss how this is done
after introducing stochastic processes.

We can think of stochastic processes as the opposite of a deterministic process,
which we’re already familiar with. A system is deterministic if we’re able to predict
what the system will do at any time in the future, provided we know what the current
state of the system is. These systems are usually modelled by differential equations.
A stochastic process on the other hand, is a process where we can’t predict what will
happen, we can only say what will probably happen. Brownian motion is the classic
example of a stochastic process but other examples include repeatedly flipping a coin
(known as a Bernoulli process), electrical fluctuations in a circuit due to thermal
noise and the occurrence earthquakes. Instead of differential equations, this type of
process is modelled by a sequence of random variables. This brings us to the following
definition:

Definition: A stochastic process is a sequence of random variables,

X1, X2, · · · , Xi, · · · ,

all of which take values in the same set S and are distributed over S according to the
following probability densities respectively:

P1, P2, · · · , Pi, · · · .

The set S is usually taken to be the configuration space or phase space of a physical
system and so we refer to the set S as state space (e.g. for a particle in Brownian
motion S is the set of possible positions of the particle). We think of the subscripts
as time, i.e. X1 is the state of the system at time 1 etc. For the duration of this
section and for convenience, we will consider time to be discrete but it’s possible to
define stochastic processes with continuous time which are aptly called continuous-
time stochastic processes. The probability densities Pi need not be the same for all i
and can have complicated dependencies on the random variables Xi.

There’s a special class of stochastic processes which we’ll be interested in known
as Markov chains. A Markov chain is a stochastic process which has the Markov
property: The distribution Pi+1 only depends on i and the value taken by Xi. For a
process with this property, the distribution of the a particular X depends only on the
previous X and is conditionally independent of all the X’s that happened before the
previous one. It is sometimes said a Markov process has no memory of its past as
what happens next only depends on the current state.

14

Example (Markov Chain)

As an example of a Markov chain we consider a 1D random walk (or 1D Brow-
nian motion). We imagine a particle beginning at a point x0 on the real line
and at every time i the particle moves to a new location on the line such that
the displacement of the particle is a Gaussian random number ξ. To realise
this process in python, we can implement the following steps for some chosen
values of σ and x0:

1. Generate a number ξ ∼ Norm(0, σ) and set x1 = x0 + ξ.

2. Generate a number ξ ∼ Norm(0, σ) and set x2 = x1 + ξ.

...

i. Generate a number ξ ∼ Norm(0, σ) and set xi = xi−1 + ξ.

...

This process should continued until we reach some desired number of steps. If
G ∼ Norm(0, σ) is a Gaussian random variable, then the sequence of random
variables describing this process is:

X1 = x0 +G, (∼ P1 = Norm(x0, σ))

X2 = x1 +G, (∼ P1 = Norm(x1, σ))

...

Xi = xi−1 +G, (∼ P1 = Norm(xi−1, σ))

This is clearly a Markov chain since each Pi depends on the outcome of Xi−1.

The following code implements the Markov chain (or random walker) described
in the above example for 100 steps. It then plots the outcome of random variables
Xi as a function of i (or the history of the walker). This code was ran three times to
produce the graph show in Fig. 5.

15

Figure 5: The histories of three random walkers

1 import numpy as np
2 import numpy . random as ran
3 import matp lo t l i b . pyplot as p l t
4
5 # number o f time s t ep s
6 N steps = 100
7
8 # a l l o c a t e memory to s t o r e the h i s t o r y o f the walker
9 x = np . z e r o s (N steps)

10
11 # every time step , move the walker by a Gaussian random number
12 f o r i in np . arange (1 , N steps) :
13 x [i] = x [i −1] + ran . randn ()
14
15 # p lo t the h i s t o r y o f the walker
16 p l t . p l o t (np . arange (0 , N steps) , x)
17 p l t . x l ab e l (’ time ’)
18 p l t . y l ab e l (’ x ’)
19 p l t . t i t l e (’ Hi s tory o f random walker ’)

Let’s now consider a large number of these walkers evolving in time simultaneously
and how their distribution on the real line changes in time. The following code creates
ten thousand random walkers and evolves them under a similar Markov process to the
one described above. The only difference is that now the process reflects the walkers
off two boundary points xmax and xmin so that the walkers are now confined to
the 1 dimensional box [xmax, xmin]. The code also animates the distribution of the
walkers as they evolve under this Markov process. Initially, all ten thousand walkers
are located the origin and we see the distribution peaked sharply at that point. Then,
as the walkers start moving, a bunch of walkers drift to the left, another bunch drift to
the right and some fluctuate about the origin resulting in the distribution spreading

16

out until it fills the box. Eventually, the distribution settles to a uniform distribution
as shown in Fig.6.

1 import numpy as np
2 import numpy . random as ran
3 import matp lo t l i b . pyplot as p l t
4 import matp lo t l i b . animation as ani
5
6 de f n ex t po s i t i o n (x , xmax) :
7 ’ ’ ’ This func t i on updates the po s i t i o n o f a
8 c o l l e c t i o n o f walkers ’ ’ ’
9

10 N = len (x)
11 x = x + ran . randn (N) # move a l l the walkers
12 # by a Gaussian
13
14 I = np . where (x>xmax) # Implement boundary at
15 x [I] = xmax − (x [I]−xmax) # x = xmax
16
17 I = np . where (x<−xmax) # Implement boundary at
18 x [I] = −xmax + (−xmax−x [I]) # x = −xmax
19 return x + ran . randn (N)
20
21 # Number o f walkers and i n i t i a l p o s i t i o n o f walkers
22 walkers = 10∗∗4 ; x0 = 0 .0
23
24 # Number o f b ins f o r histogram and boundary p o s i t i o n s
25 b ins = 50 ; xmax = 20 ; xmin = −1∗xmax
26
27 # Number o f time s t ep s & a l l o c a t e memory
28 nts = 500
29 x = x0 + np . z e ro s (walkers) # po s i t i o n s o f walkers
30 counts = np . z e r o s ((nts , b ins)) # d i s t r i b u t i o n o f walkers
31 counts [0 , :] , edges = np . histogram (x , b ins=bins ,
32 range=(xmin , xmax))
33
34 # Evolve walkers & c a l c u l a t e t h e i r d i s t r i b u t i o n each time step
35 f o r i in range (1 , nts) :
36 x = nex t po s i t i o n (x , xmax)
37 counts [i , :] , = np . histogram (x , b ins=bins ,
38 range=(xmin , xmax))
39
40 # This func t i on t e l l s FuncAnimation what to draw each time step
41 de f updat e h i s t (num, counts , edges , xl ims , y l ims) :
42 p l t . c l a ()
43 p l t . bar (edges [: −1] , counts [num , :])
44 p l t . xl im (xl ims)
45 p l t . yl im (yl ims)

17

46 # This animates the d i s t r i b u t i o n o f walkers
47 f i g = p l t . f i g u r e ()
48 movie = ani . FuncAnimation (f i g , update h i s t , nts ,
49 f a r g s=(counts , edges , (xmin , xmax) ,
50 (0 , 1000)))
51 p l t . show ()

(a) (b) (c)

Figure 6

The fact that the distribution of walkers eventually settles down on a uniform
distribution is a property of this particular Markov chain. If we were to update the
walkers using something other than a Gaussian random number, we would have a
different Markov chain and the distribution of walkers may settle down on a differ-
ent distribution. To illustrate this, and to introduce useful notation, we’ll alter the
Markov chain implemented above by including what we’ll call an acceptance step.
The general form of a Markov chain with an acceptance step is expressed in the
following 4 steps:

1. Start the process in a predefined state µ0

2. (Trial step) Choose a trial state ν for the next state of the process. The prob-
ability of choosing state ν given the process is in state µ is denoted ωµν .

3. (Acceptance step) Accept ν as the next state with probability Aµν . Otherwise,
leave the process where it is by accepting µ as the next state instead.

4. Return to step 2.

Let’s now take the Markov chain we previously considered and make the following
change to each step: after generating a Gaussian random number ξ, we accept xi+1 =
xi + ξ as the next state of the process with probability

A =
1

1 + 0.25(xi + ξ)2
. (47)

Otherwise we set xi+1 = xi. This can be implemented by replacing the next position()
function in the python code with the following python function.

18

1 de f n ex t po s i t i o n (x , xmax) :
2 ’ ’ ’ This func t i on updates the po s i t i o n o f a
3 c o l l e c t i o n o f walkers ’ ’ ’
4 N = len (x)
5
6 # Tr i a l s tep
7 x i = ran . randn (N)
8
9 # Acceptance s tep

10 f o r i in range (N) :
11
12 # For each walker , accept the new s t a t e
13 # with p r obab i l i t y A {mu nu} :
14 i f ran . rand ()< 1 . 0/ (1 + 0 .25∗ (x [i] + x i [i]) ∗∗2) :
15 x [i] = x [i] + x i [i]
16
17 # return the new s t a t e s o f the walkers
18 re turn x

With this alteration to the code, walkers are less likely to move away from the
origin the further away they are from the origin. If we now run the code and, for
example, set the starting point x0 = 10, initially we see a sharp peak in the distribu-
tion of walkers at x = 10. Then, as before, the distribution starts to spread out as
walkers begin evolving. However, instead of the distribution spreading out to fill the
box, the walkers are now pushed towards the origin and their distribution eventually
comes to rest where it well approximates a Cauchy distribution centred at the origin
as shown in Fig. 7.

(a) (b) (c)

Figure 7

Consequently, if we wanted to generate some random numbers with a Cauchy dis-
tribution, we could implement the Markov chain above and once the distribution of
walkers reaches equilibrium, we could take the positions of the walkers as our desired
random numbers. This suggests yet another way of sampling points from a distribu-
tion which is very different from the transformation and rejection methods. If we want
to sample from the distribution P (x), the idea is to find a Markov process which will

19

evolve a collection of walkers in such a way that the distribution of walkers converges
to P (x) where it comes to equilibrium. Once the distribution is in equilibrium, we
can stop the evolution and accept the current state of each walker as a sample from
the distribution P (x). In practise we only evolve one or a small collection of walkers
and periodically accept their states as samples once they’ve reached equilibrium. The
equilibrium distribution of a Markov process is also called a Gibbs state.

The natural question to ask now is, if we’re interested in a particular distribution
P (x), how do we design a Markov process which has P (x) as its equilibrium distribu-
tion. To answer this question we need to know how a distribution changes in time as
the system evolves under a particular Markov chain. To this end, we now introduce
transition probabilities and use them to write down what’s called a master equation
for the system. For the rest of this section, to simplify notation, we’ll assume the
state space S of every Markov chain is discrete and states can be indexed by N or
some finite subset of N.

For any Markov chain, a transition probability Tνµ tells us the probability the
next state the system will be in is ν given that the system is currently in state µ.

Pr(Next state is ν | Current state is µ) = T (µ→ ν) = Tνµ. (48)

In general the transition probabilities of a Markov chain can depend on time but
for the Markov chains we’ll be considering here, the transition probabilities will be
independent of time. Note, since at any given time during a Markov chain the system
must be in a state contained in S, the transition probabilities must satisfy

∑
ν∈S Tνµ =

1. If a Markov chain fits the general form of a Markov chain with an acceptance step
described above, the transition probabilities can be written as Tνµ = ωµνAµν .

At any time i the distribution of a collection of walkers is given by the following
probability distribution

Pµ(i) =
Number of walkers in state µ at time i

Total number of walkers
. (49)

In the special case where the total number of walkers is infinite, we can use the
distribution at time i and the transition probabilities to calculate the distribution at
time i+ 1. This is done using the fact that the number of walkers in state ν at time
i+ 1 is the sum over S of the number of walkers at time i transitioning from µ to ν.
Heuristically, we can express this fact as follows:(

Number of walkers in
state ν at time i+ 1

)
=
∑
µ∈S

(
Fraction of walkers in state
µ that move to state ν

)(
Number of walkers
in state µ at time i

)
We now divide both sides of this expression by the total number of walkers and note
that as the total number of walkers grows, the fraction of walkers transitioning from
µ to ν better approximates Tνµ. Thus, in the limit where the number of walkers goes
to infinity, we can write

Pν(i+ 1) =
∑
µ∈S

TνµPµ(i). (50)

20

This equation is sometimes written using matrix notation as Pi+1 = TPi where Pi is
a vector containing the probabilities Pµ(i) and T is a matrix containing the transition
probabilities Tνµ. The condition

∑
ν∈S Tνµ = 1 implies the elements of any column of

the matrix T must add up to one. Such a matrix is called a stochastic matrix.
By subtracting Pν(i) from the expression for Pν(i + 1) and using the relation∑
ν∈S Tµν = 1 we come to the following expression describing how the distribution of

an infinite collection of walkers evolves:

Pν(i+ 1)− Pν(i) =
∑
µ∈S

TνµPµ(i)− Pν(i)

(∑
µ∈S

Tµν

)
(51)

=
∑
µ∈S

(TνµPµ(i)− Pν(i)Tµν) . (52)

This is called the master equation for the Markov chain and relates the transition
probabilities of the Markov chain to how the distribution of an infinite collection
of walkers changes in time. For a finite collection of walkers we would expect their
distribution to evolve according to (52) on average, rather than exactly.

We’re ultimately interested in creating a Markov chain which has a desired dis-
tribution P̃µ as an equilibrium distribution. As the equilibrium distribution doesn’t
change in time we drop the dependence on time the variable i in the notation. To
ensure the distribution P̃µ is stationary under our Markov chain (so the left hand side
of the master equation is zero), we can require that each term in the sum on the right
hand side of the master equation is zero. This gives the following condition known as
detailed balance which the transition probabilities of our Markov chain must satisfy
in order to have the desired result:

P̃µTνµ − P̃νTµν = 0, or P̃µTνµ = P̃νTµν . (53)

While the condition of detailed balance ensures our desired distribution P̃ is sta-
tionary under our Markov chain, it alone is not enough to ensure the distribution of
walkers converges to P̃ . If we being with an arbitrary distribution P , it’s possible
our Markov chain may evolve P to some stationary distribution other than the one
we wanted. To guarantee that we end up with the desired distribution, regardless of
what initial distribution we start with, we can require the Markov chain to satisfy
the additional condition of ergodicity. A Markov chain is ergodic if it is possible for
a walker to reach any state in S from any other state in a finite number of steps.
The reason why the conditions of detailed balance and ergodicity ensure the Markov
chain converges to the desired distribution is left as an aside in the section 1.4.1. A
method for creating Markov chains satisfying detailed balance and ergodicity is then
discussed in section 1.4.2.

1.4.1 (Aside) Convergence of Markov chains

The proof that a Markov chain satisfying detailed balance and ergodicity will converge
to the desired distribution P̃ , regardless of the initial distribution we choose, uses three

21

results involving the matrix of transition probabilities T . We derive each result in
turn and then use them to prove that the Markov chain will converge as stated. The
three results are as follows:

1. The matrix T being stochastic and non-negative (meaning the entries of T are
greater than or equal to zero) implies every eigenvalue λ of T satisfies |λ| ≤ 1.

2. Detailed balance and T being a stochastic matrix implies the vector P̃ is an
eigenvector of T with eigenvalue 1.

3. Ergodicity implies any eigenvector of the stochastic, non-negative matrix T with
eigenvalue 1 is unique.

To show the first result, recall that the entries of the matrix T are probabilities and
so T is non-negative. Also, recall that T being a stochastic matrix means

∑
ν Tνµ = 1.

Now, suppose v is a left eigenvector of T with eigenvalue λ. Without loss of generality,
let the m-th component of v, i.e. vm, be one of the components with the largest
absolute value. So we have |vm| ≥ |vi| for every component vi of v. By taking the
absolute value of the m-th column of the eigenvalue equation vT = λv we find the
following:

|λvm| = |λ||vm| = |
∑
i

Timvi| (54)

≤
∑
i

Tim|vi|
(

By the triangle inequality
and non-negativity of T

)
(55)

≤
∑
i

Tim|vm|
(

Since vm has the largest
absolute value

)
(56)

= |vm|. (Since T is stochastic) (57)

Thus |λ||vm| ≤ |vm| implying |λ| ≤ 1 as required.
The second result follows from expressing the ν-th component of the vector T P̃

in summation notation and then using the detailed balance condition (53) to swap
the indices being summed over.

(T P̃)ν =
∑
µ

TνµP̃µ =
∑
µ

P̃νTµν = P̃ν
∑
µ

Tµν = P̃ν . (58)

In the last equality, we used the fact that T is stochastic. Hence, P̃ is an eigenvector
of T with eigenvalue 1.

Before proving the third result we will show that ergodicity implies any eigenvector
of T with eigenvalue 1 can be chosen so that all of its components are positive. The
third result is a corollary to this. To start, recall ergodicity means any state ν can
be reached from any state µ in a finite number of steps. In other words, for any two
states µ and ν, there exists a finite positive integer nµν such that the µ, ν component
of the matrix T nµν is non-zero: T

nµν
νµ > 0. Let n be the largest nνµ and define the

matrix M as follows:

n = max
µ,ν∈S
{nµν}, M =

1

n

(
T + T 2 + · · ·+ T n

)
. (59)

22

It’s easy to see that M is also stochastic and any eigenvector of T is also an eigenvector
of M . Moreover, since each matrix Tm is non-negative and because of the way n is
defined, we have Mνµ > 0 for all µ, ν ∈ S. We denote the smallest component of M
by δ.

We now let v be an eigenvector of T with eigenvalue 1 and separate v into positive
and negative parts. Namely, we define v+ to be the vector whose components are
the same as v after every negative component of v has been set to zero. Similarly,
we define v− to be the vector whose components are the same as −v after every
negative component has been set to zero. So we have v = v+ − v−. Also, let α =
min{

∑
i v

+
i ,
∑

i v
−
i }. Notice, each component of the vector Mv+ is greater than or

equal to δα. ∑
j

Mijv
+
j ≥

∑
j

δv+j = δ
∑
j

v+j ≥ δα. (60)

Similarly, we have
∑

jMijv
−
j ≥ δα. We can now show that α must be zero by

summing up the absolute value of the components of the vector Mv:∑
i

|(Mv)i| =
∑
ij

|Mijvj|,

=
∑
ij

|Mijv
+
j −Mijv

−
j |,

≤
∑
ij

|Mijv
+
j − δα|+ |Mijv

−
j − δα|, (By the triangle inequality)

=
∑
ij

|Mijv
+
j |+ |Mijv

−
j | − 2δα, (By (60))

=
∑
j

|v+j |+ |v−j | − 2Nδα,

(
Since M is stochastic,
N = total number of states

)
=
∑
j

|vj| − 2Nδα.
(
Since v = v+ − v−

)
However, Mv = v and so

∑
i |(Mv)i| =

∑
i |vi|. Also, δ,N > 0 so we must have

α = 0. Thus, either all the components of v are positive or they’re all negative, in
which case −v has positive components.

Now, to see that any eigenvector v of T with eigenvalue 1 is unique we suppose that
both v and u are such eigenvectors. We choose v and u so that all of their components
are positive. We also choose to normalise v and u such that their components sum to
1:
∑

i vi =
∑

i ui = 1. Then the vector v−u is also an eigenvector of T with eigenvalue
1 and so its components are also all positive or negative. However,

∑
i(vi − ui) =∑

i vi−
∑

i ui = 1−1 = 0. Therefore, each component of v−u must be zero, implying
v = u.

We’re now in a position to show that a Markov chain satisfying detailed balance
and ergodicity will converge to the desired distribution. Assuming (for the moment)
that the matrix T is diagonalisable, we can expand any initial distribution we choose
as a combination of eigenvectors of T :

P = c0v0 + c1v1 + c2v2 + · · · , (61)

23

where the vi’s are eigenvectors of T and the ci’s are coefficients. Since T satisfies
detailed balance and ergodicity, we know our desired distribution P̃ is the only eigen-
vector of T with eigenvalue 1. We choose to let v0 = P̃ and it can be shown that
the corresponding coefficient c0 must equal one (otherwise the distribution will not
be normalised throughout the evolution of the Markov chain). So now we can write

P = P̃ + c1v1 + c2v2 + · · · . (62)

After n steps of the Markov chain our initial distribution turns into

T nP = T nP̃ + c1T
nv1 + c2T

nv2 + · · · , (63)

= P̃ + c1λ
nv1 + c2λ

nv2 + · · · . (64)

However, we know that the eigenvalues, other than 1, satisfy |λi| < 1. Hence, in the
limit n → ∞, the vi terms vanish and we have T nP → P̃ . The same result is true
if the matrix T is not diagonalisable. In this case we can consider T in a basis of
generalised eigenvectors so that T is in Jordan normal form:

T =


1

J1
. . .

Jk

 , (65)

where the Ji’s are Jordan blocks. After a large number of steps in the Markov chain,
each Jordan block becomes:

Jni =


λi 1

λi
. . .
. . . 1

λi


n

=


λni nλn−1i · · ·

(
n

N−1

)
λn−Ni

λni
. . .
. . . nλn−1i

λni

 . (66)

Since |λi| < 1 implies
(

n
N−1

)
λn−Ni → 0 as n → ∞, each Ji tends to the zero matrix.

As P̃ is the eigenvector corresponding to the eigenvalue 1 in (65), this shows that
T nP → P̃ .

1.4.2 The Metropolis Algorithm

The Metropolis algorithm is a method for creating Markov chains that satisfy the
condition of detailed balance. Let us continue to denote our desired distribution by
P̃ . The key idea is to choose a Markov chain with an acceptance step using the
following acceptance probability.

Aµν =

{
1 if P̃µ ≤ P̃ν ,
P̃ν
P̃µ

if P̃µ > P̃ν .
(67)

24

We also need to ensure that the trial step of the Markov chain makes the process
ergodic and is symmetric, meaning ωµν = ωνµ. To see this Markov chain satisfies the
condition of detailed balance we can look at the following quotient:

Tνµ
Tµν

=
ωµνAµν
ωνµAνµ

=
Aµν
Aνµ

=
P̃ν

P̃µ
. (68)

This is the detailed balance condition (53).
One major advantage of this method is we don’t need to be able to compute P̃

exactly, only up to an overall constant. This is very useful because the normalisation
of a distribution can be difficult/expensive to calculate. For example, a common
calculation where this method is particularly useful is calculating the average of an
observable A of a system in thermal equilibrium at temperature T :

〈A〉 =
∑
µ∈S

Aµ
e−Hµ/kT

Z
, (69)

where Aµ is the value of A when the system is in state µ, Hµ is the energy of state µ,
k is the Boltzmann constant and Z is the partition function. The issue in calculating
this quantity directly is the state space S is often way too large to loop through. For
a 20× 20 Ising model (introduced in class) the state space has 220×20 ≈ 10120 states,
so even if we had an extremely powerful computer that could compute 1015 of the
terms in (69) per second, it would still take about 1097 years to compute them all.
The trick is to notice that the Boltzmann distribution Pµ = exp(−Hµ/kT)/Z is small
when Hµ is large. So we can compute a good approximation to (69) by using Monte
carlo integration with importance sampling:

〈A〉 ≈ 1

N

N∑
i=1

Aµi , (70)

where the µi are distributed in S according to the Boltzmann distribution. We could
implement a Markov chain to generate samples from the Boltzmann distribution but,
depending on how we implement it, we may need to calculate the partition function Z
to ensure the Markov chain satisfies detailed balance (53). However, computing Z is
often an intractable problem. We can employ the Metropolis algorithm which avoids
this problem since the acceptance probability (67) is what ensures detailed balance
and in this case the acceptance probability becomes:

Aµν =

{
1 if Hν ≤ Hµ,

exp(Hµ−Hν
kT

) if Hν > Hµ,
(71)

which is independent of the partition function Z.

1.4.3 The Heatbath Algorithm

(To be completed)

25

1.4.4 Autocorrelation

(To be completed)

2 Part B: Differential Equations

2.1 Matrices and Linear differential equations

Consider the following system of linear equations.

a11w + a12x+ a13y + a14z = b1

a21w + a22x+ a23y + a24z = b2

a31w + a32x+ a33y + a34z = b3

a41w + a42x+ a43y + a44z = b4

(72)

Recall, such a system can be written as a matrix equation, of the form Ax = b, by
collecting all the unknowns into a vector x, all their coefficients into a matrix A and
constant terms into a vector b as follows:

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



w
x
y
z

 =


b1
b2
b3
b4

 (73)

Solving the system of linear equations then involves finding the inverse of the matrix
A and calculating x = A−1b. Such a system of linear equations arise when we want
to solve linear differential equations on a discretised space.

Consider the following linear ODE on the interval [a, b]:

A
d2φ

dx2
+B

dφ

dx
+ Cφ = ρ, φ(a) = c1, φ(b) = c2. (74)

We now discretise the defined interval into (N + 2) points, with lattice spacing dx =
b−a
N+1

. An unknown function φ(x) defined on the original interval now becomes a
discrete set of unknowns, one for each point of the lattice. We label the points of the
lattice as x = x0 + ia and the value of the function φ at the lattice points as follows:

φ(x) = φ(x0 + idx) = φi, (75)

where i = 0, 1, · · ·N + 1. Recall, on a discretised space, derivatives of a function
are given by finite differences. We’ll use the symmetric finite difference equations for
both the first and second derivatives of a function in (74). In other words, we replace
the derivatives in the differential equation (74) by the following:

∂φ

∂x
(x)→ φi+1 − φi−1

2dx
, (76)

∂2φ

∂x2
(x)→ φi+1 − 2φi + φi−1

dx2
. (77)

26

This yields

A

(
φi+1 − 2φi + φi−1

dx2

)
+B

(
φi+1 − φi−1

2dx

)
+ Cφi = ρi (78)

Hence the differential equation (74) turns into the following set of N equations in-
volving the unknowns φi:(

Cdx2 − 2A
)
φi +

(
A− Bdx

2

)
φi−1 +

(
A+

Bdx

2

)
φi+1 = dx2ρi, (79)

where i = 1 · · ·N .
Note, not all of the φi’s are unknown. Both φ0 and φN+1 are fixed by the boundary

conditions. This means that not all of the above equations have a left hand side of
the same form as that of the equations listed in (72). Namely the equations where
i = 1 and i = N have constant terms on the left hand side. By bringing these terms
to the right hand side, all of the above equations will have the same form as those in
(72) and so we can write the system of equations as the following matrix equation.

γ β 0 0 · · · 0
α γ β 0 · · · 0
0 α γ β · · · 0
...

...
.

...
0 0 · · · α γ β
0 0 · · · 0 α γ




φ1

φ2
...

φN−1
φN

 =


dx2ρ1 − αφ0

dx2ρ2
...

dx2ρN−1
dx2ρN − βφN+1

 (80)

where α = A− Bdx
2

, γ = Cdx2 − 2A and β = A+ Bdx
2

.

2.2 Boundary value PDEs

(To be completed)

2.3 Initial value PDEs

We now discuss solving linear initial value problems. As a running example we’ll
consider the diffusion equation in 1 + 1 dimensions with initial value u(x, 0) = u0(x),

∂u

∂t
= D

∂2u

∂x2
. (81)

The first thing to do is discretise both the space and time dimensions into a rect-
angular grid. We do this in almost the same way we discretised the xy-plane. The
difference is we use different lattice spacings in the x and t directions. The main issue
with initial value problems and time evolution is the stability of our solution. While
evolving a function u in time, in practise it can happen that errors accumulate in such
a way that our answer veers off its true course and converges to an incorrect answer.
To ensure stability it’s sometimes essential for the spacing in the space direction to be

27

different to the spacing in the time direction and for both to satisfy an inequality that
guarantees stability (which we’ll soon derive). We denote the spacing in the space
direction by dx and the spacing in the time direction by dt. Then, for the values of
the function u at different sites of the space-time grid we write

u(xi, tn) = u(x0 + idx, t0 + ndt) ≡ uni . (82)

The next step is to replace the derivatives in the diffusion equation by finite
difference equations. Up until now we’ve been using the symmetric finite difference
equations for everything. We’ll continue to do so for the spacial derivatives. However,
it turns out that it’s a bad idea to use the symmetric finite difference equation for the
time derivative (we’ll see soon that this leads to instabilities). Instead, we’re going
to first look at using the forward derivative for the time direction. Replacing the
derivatives in the diffusion equation by the finite difference equations just discussed
results in the following set of equations:

un+1
i =

(
1− 2Ddt

dx2

)
uni +

2Ddt

dx2
(uni−1 + uni+1). (83)

We now have a matrix equation of the form un+1 = Aun which relates the function
u at time n + 1 with u at time n. We can now solve the initial value problem by
repeatedly acting on the initial value u0 with the matrix A until we obtain un.

Now that we have one way of solving initial value problems, we can ask how
stable it is. The standard way to check the stability of a method like the FTCS
scheme is called Von Neumann analysis. The first step of the analysis is to replace
the components of u in the finite difference equation by the components of its Fourier
transform in the space direction: unk . Each Fourier mode evolves independently in
time for the diffusion equation. This gives the eigenmode evolution:

un+1
k = ξku

n
k =⇒ unk = ξnku

0
k. (84)

So every time we multiply our solution by A to evolve it forward another step, we
multiply each mode unk by a constant ξk. We can find an expression for the constant
ξk by inserting this into the FTCS scheme for the diffusion equation gives

ξn+1
k eijkdx − ξnk eijkdx

dt
= Dξnk

ei(j−1)kdx − 2eijkdx + ei(j+1)kdx

(dx)2
. (85)

Letting n = 0 and rearranging gives:

ξk = 1− 2Ddt

(dx)2
(
e−ikdx − 2 + eikdx

)
= 1− 4Ddt

(dx)2
sin2

(
kdx

2

)
. (86)

For stability we need |ξk| ≤ 1 for all k. However, the above equation is always less
than one, so we need ξk ≥ −1 for all k. Therefore, we need

4Ddt

(dx)2
sin2

(
kdx

2

)
≤ 2. (87)

28

The worst case is when k is such that sin2(kδx
2

) = 1. Hence, to ensure stability, we
should choose

4Ddt

(dx)2
≤ 2 =⇒ dt ≤ (dx)2

2D
. (88)

CTCS scheme: (To be completed)(unconditionally unstable)
BTCS scheme: (To be completed)(unconditionally stable)
Crank-Nicolson method: (To be completed)(unconditionally stable)

2.4 Relaxation methods

The relaxation method for solving an equation like Lφ = ρ, where L is an elliptic
operator, φ is an unknown function and ρ is a known function, for some specified
boundary values, involves turning the boundary value problem into an initial value
problem. Basically, we choose an arbitrary initial state f and evolve it according to
the following PDE:

∂f

∂t
= Lf − ρ. (89)

The expectation is that the system will eventually converge to a steady state solution
f∞ which we can take as a solution to the above differential equation since

∂f∞
∂t

= 0 =⇒ Lf∞ − ρ = 0. (90)

2.4.1 Jacobi method

(To be completed)(slower but parallelisable)

Discretise equation to become A~f = ~ρ. Decompose A into diagonal and remainder:
A = D +R. Then iterate ~fn+1 = D−1(~ρ−R~fn), using the element-based formula:

fn+1
i =

1

aii

(
ρi −

∑
j 6=i

aijf
n
j

)
(91)

2.4.2 Gauss-Seidel method

(To be completed)(faster but not parallelisable)

Discretise equation to become A~f = ~ρ. Decompose A into lower triangular and
strictly upper triangular components: A = L + U . Then iterate L~fn+1 = ~ρ − U ~fn,
using forward substitution:

fn+1
i =

1

aii

(
ρi −

i−1∑
j=1

aijf
n+1
j −

N∑
j=i+1

aijf
n
j

)
(92)

29

2.4.3 Convergence

Why exactly do this work? Once we discretise the system, we’re really solving the
matrix equation A~φ = ~ρ, whose solution is ~φ = A−1~ρ. The discretised initial value
problem can be written as

~φn+1 − ~φn = dt(A~φn − ~ρ) (93)

~φn+1 = (1 + dtA)~φn − dt~ρ (94)

= B~φn − ~r. (95)

where B = 1 + dtA and ~r = dt~ρ. Iterating this gives:

~φ1 = B~φ0 − ~r, (96)

~φ2 = B~φ1 − ~r = B2~φ0 − (B + 1)~r, (97)

~φ3 = B3~φ0 − (B2 +B + 1)~r, (98)

...

~φn = Bn~φ0 −

(
n−1∑
m=0

Bm

)
~r, (99)

In the limit n → ∞, if the absolute value of all the eigenvalues of B are less than 1
(which is ensured if the spacing on the space-time grid is small enough) then Bn~φ0 → 0
and

~φn → ~φ∞ = −

(
∞∑
m=0

Bm

)
~r. (100)

Recall the following matrix formula:

(1− T)−1 = 1 + T + T 2 + T 3 · · · . (101)

So we have

~φ∞ = −(1−B)−1~r = −(1− 1− dtA)−1(dt~ρ) = A−1~ρ. (102)

Notice A−1~ρ = (1 + B + · · ·+ Bn−1)~r + O(ρns), where ρs is the largest eigenvalue
of B. Assuming that each iteration reduces the difference between the estimate and
the true solution by a factor ρs, the number of iterations n required to reduce this
difference by a factor 10−p is given by

ρns = 10−p, (103)

=⇒ n ln(ρs) = −p ln(10), (104)

=⇒ n =
−p ln(10)

ln(ρs)
. (105)

For the Jacobi method we have ρs = ρJ = cos(π
N

). So the number of iterations of the
Jacobi method needed to reduce the difference by a factor of 10−p is

nJ =
−p ln(10)

ln(ρJ)
=
−p ln(10)

ln(cos(π
N

))
. (106)

30

For the Gauss–Seidel method we have ρs = ρGS = cos2(π
N

). So the number of
iterations of the Gauss–Seidel method needed to reduce the difference by a factor of
10−p is

nGS =
−p ln(10)

ln(ρGS)
=
−p ln(10)

ln(cos2(π
N

))
=
−p ln(10)

2 ln(cos(π
N

))
=
nJ
2
. (107)

Hence the Gauss–Seidel converges twice as fast as the Jacobi method.

2.4.4 Successive over-relaxation

(To be completed)

Discretise equation to become A~f = ~ρ. Decompose A into lower triangular, diagonal
and upper triangular components: A = L+D+U . Then choose ω ∈ [1, 2] and iterate

(D + ωL)~fn+1 = ω~ρ− (ωU + (1− ω)D)~fn, using forward substitution:

fn+1
i = (1− ω)fni +

ω

aii

(
ρi −

i−1∑
j=1

aijf
n+1
j −

N∑
j=i+1

aijf
n
j

)
. (108)

2.4.5 Residual

(To be completed)
How precise is our answer after n steps? If φ is the true solution to Lφ = ρ and f is
our approximation to φ then the true error is φ−f . Or to turn this into a number we
can take

∑
i |~φi − ~fi|. However, we don’t know φ (it’s what we’re trying to compute)

so we can’t compute this error. Instead we can compute the residual:

res(~f) =
∑
i

|(A~f)i − ~ρi|, (109)

where A is discretised L. The closer f is to φ, the closer res(f) is to 0.

31

